cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190136 Largest prime factor of n*(n+1)*(n+2)*(n+3).

Original entry on oeis.org

3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 13, 13, 29, 29, 31, 31, 31, 31, 17, 17, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 47, 47, 17, 17, 53, 53, 53, 53, 19, 29, 59, 59, 61, 61, 61, 61, 31, 13, 67, 67, 67
Offset: 1

Views

Author

Reinhard Zumkeller, May 07 2011

Keywords

Comments

a(n) > 11 for n > 9;
a(A086801(n)) = A000040(n) for n > 2.
It follows from Størmer's theorem that lim inf a(n) = infinity, and in fact a(n) >> log log n. - Charles R Greathouse IV, Feb 19 2013

Examples

			Numbers m <= 10^6 such that a(m) = p:
p=13: 10, 11, 12, 13, 24, 25, 63;
p=17: 14, 15, 32, 33, 48, 49;
p=19: 16, 17, 18, 19, 54, 75, 168;
p=23: 20, 21, 22, 23, 207, 322;
p=29: 26, 27, 55, 114;
p=31: 28, 29, 30, 31, 62, 90, 152, 153, 340, 493, 1518;
p=37: 34, 35, 36, 37, 74, 184, 405;
p=41: 38, 39, 123, 245, 285, 286, 287, 492, 1023, 1517, 1680;
p=43: 40, 41, 42, 43, 84, 85, 169, 258, 341, 342, 558, 1330, 1331, 2106, 5289, 10878;
p=47: 44, 45, 46, 47, 91, 92, 93, 185, 186, 187, 374, 375, 702, 986, 987, 17575;
p=53: 50, 51, 52, 53, 159, 368, 369, 527, 845, 899, 900, 1375;
p=59: 56, 57, 115, 116, 117, 118, 174, 294, 528, 529, 530, 648, 943, 1885, 6783;
p=61: 58, 59, 60, 61, 119, 120, 121, 122, 182, 183, 242, 243, 244, 549, 608, 609, 1034, 1218, 1219, 1767, 1768, 2013, 2254, 2622;
p=67: 64, 65, 66, 67, 132, 133, 735, 1271, 1272, 1273, 2208, 2277, 3885, 4958, 5828, 5829;
p=71: 68, 69, 140, 141, 142, 284, 423, 424, 494, 636, 637, 779, 780, 781, 3477, 3478, 3549, 3550, 4899;
p=73: 70, 71, 72, 73, 143, 144, 145, 219, 363, 510, 728, 729, 803, 1022, 1239, 1679, 2772, 70224;
p=79: 76, 77, 78, 79, 158, 234, 235, 472, 473, 474, 550, 867, 868, 1024, 1104, 1419, 2209, 2448, 2923, 3476, 3869, 4898, 5290, 7502, 46136, 70150;
p=83: 80, 81, 82, 83, 246, 247, 413, 495, 663, 664, 1078, 1159, 1824, 2736, 3483, 4232, 4896, 4897, 7137, 8214, 12614, 36517, 97524;
p=89: 86, 87, 88, 89, 175, 264, 265, 354, 531, 710, 711, 712, 798, 1245, 1332, 2847, 4895, 5073, 6318, 18423, 28302, 29279;
p=97: 94, 95, 96, 97, 288, 289, 483, 580, 581, 582, 774, 873, 1064, 1065, 1455, 2132, 2133, 3007, 3975, 4556, 4557, 6496, 6497, 6887, 7564, 7565, 7566, 13869, 17457.
		

References

  • Paulo Ribenboim, Galimatias Arithmeticae (Chap 11), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 345.
  • J. J. Sylvester, "On arithmetical series", Messenger of Mathematics 21 (1892), pp. 1-19 and 87-120.
  • M. Faulkner, "On a theorem of Sylvester and Schur", J. London Math. Soc. 41:1 (1966), pp. 107-110.

Crossrefs

Programs

  • Haskell
    a190136 n = maximum $ map a006530 [n..n+3]
    
  • Mathematica
    Table[FactorInteger[Times@@(n+Range[0,3])][[-1,1]],{n,70}] (* Harvey P. Dale, Mar 19 2018 *)
  • PARI
    gpf(n)=vecmax(factor(n)[,1])
    a(n)=my(p=precprime(n+3));if(pCharles R Greathouse IV, Feb 19 2013

Formula

a(n) = max{gpf(n), gpf(n+1), gpf(n+2), gpf(n+3)} = gpf(A052762(n+3)) with gpf = A006530, greatest prime factor.
a(n) > 47 for n > 17575. - Charles R Greathouse IV, Feb 19 2013