A190138 Final number of terms obtained with Euler's recurrence formula when computing the sum of divisors of n.
1, 2, 3, 5, 9, 15, 27, 46, 80, 138, 238, 413, 713, 1235, 2136, 3695, 6393, 11057, 19130, 33091, 57246, 99032, 171315, 296365, 512682, 886902, 1534266, 2654154, 4591475, 7942870, 13740526, 23769981, 41120131, 71134474, 123056829, 212878289, 368262059, 637063333
Offset: 1
Keywords
Examples
For n=5, start with row 5 of A195310: [4, 3, 0]. Then replace 4 by row 4: [3, 2], replace 3 by row 3: [2, 1]. The row is now [3, 2, 2, 1, 0]. Repeat process until all terms are 0: [4, 3, 0], [3, 2, 2, 1, 0], [2, 1, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]. The final array has 9 items, hence a(5) = 9.
Links
- Leonhard Euler, Jordan Bell, A demonstration of a theorem on the order observed in the sums of divisors, arXiv:math/0507201 [math.HO], 2005-2009.
- Leonhard Euler, Jordan Bell, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009.
- N. Robbins, On compositions whose parts are polygonal numbers, Annales Univ. Sci. Budapest., Sect. Comp. 43 (2014) 239-243. See p. 242.
Programs
-
Mathematica
rows = 30; gpenta[n_] := If[EvenQ[n], n(3n/2+1)/4, (n+1)(3n+1)/8]; T[n_, k_] := n - gpenta[k]; Do[row[n] = DeleteCases[Table[T[n, k], {k, n}], _?Negative], {n, rows}]; a[n_] := a[n] = row[n] //. j_?Positive :> Sequence @@ row[j] // Length; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, rows}] (* Jean-François Alcover, Sep 22 2018 *)
-
PARI
A001318(n) = { return((3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8);} A195310(n) = {if (n == 0, return ([0])); nb = 1; vec = vector(0); nn = n; while (nn >=0, nn = n - A001318(nb); if (nn >=0, vec = concat(vec, nn)); nb++;); return(vec);} A190138(m) = { vval = vector(m); for (n=1, m, vec = A195310(n); svec = 0; for (k=1, length(vec), if (vec[k] == 0, svec += 1, svec += vval[vec[k]]);); vval[n] = svec;); for (n=1, m, print1(vval[n], ", "););}
Comments