A190144 Decimal expansion of Sum_{k>=2} (1/Product_{j=2..k} j'), where n' is the arithmetic derivative of n.
2, 6, 0, 5, 0, 7, 2, 7, 0, 5, 2, 9, 7, 3, 2, 2, 8, 7, 0, 8, 0, 3, 4, 2, 6, 4, 1, 2, 4, 1, 8, 3, 8, 7, 8, 5, 1, 3, 7, 0, 8, 5, 7, 3, 6, 3, 2, 7, 6, 6, 3, 7, 2, 2, 4, 3, 8, 5, 8, 5, 0, 8, 4, 0, 7, 3, 1, 0, 5, 7, 5, 9, 3, 7, 1, 6, 1, 9, 7, 5, 1, 7, 0, 4, 7, 7, 4, 9, 9, 4, 5, 4, 7, 4, 8, 4, 5, 6, 1, 7, 0, 8, 8, 9, 4, 7, 7, 6, 2, 0, 9, 5, 9, 7, 8, 5, 2, 4, 4, 7
Offset: 1
Examples
1/2' + 1/(2' * 3') + 1/(2' * 3' * 4') + 1/(2' * 3' * 4' * 5') + 1/(2' * 3' * 4' * 5' * 6') + ... = 1 + 1 + 1/4 + 1/4 + 1/20 + ... = 2.605072705297...
Programs
-
Maple
with(numtheory); P:=proc(i) local a,b,f,n,p,pfs; a:=0; b:=1; for n from 2 by 1 to i do pfs:=ifactors(n)[2]; f:=n*add(op(2,p)/op(1,p),p=pfs); b:=b*f; a:=a+1/b; od; print(evalf(a,300)); end: P(1000);
-
Mathematica
digits = 120; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1&, FactorInteger[n], {1}]]; p[m_] := p[m] = Sum[1/Product[d[j], {j, 2, k}], {k, 2, m}] // RealDigits[#, 10, digits]& // First; p[digits]; p[m = 2*digits]; While[p[m] != p[m/2], m = 2*m]; p[m] (* Jean-François Alcover, Feb 21 2014 *)
Comments