A190273 Numbers n such that n' = m+1, with n and m semiprimes and gcd(m,n)>1, where n' is the arithmetic derivative of n.
6, 10, 21, 26, 39, 55, 57, 74, 93, 111, 122, 146, 155, 201, 203, 253, 301, 305, 314, 327, 381, 386, 417, 471, 497, 543, 554, 597, 626, 633, 689, 737, 755, 791, 794, 842, 889, 905, 914, 921, 1011, 1027, 1055, 1081, 1082, 1137, 1226, 1227, 1322, 1346, 1379, 1461, 1466, 1477, 1497, 1514, 1623, 1655, 1703, 1711, 1713, 1731, 1751, 1754, 1893, 1967, 1994
Offset: 1
Keywords
Examples
n=6, 6'=5, m=5+1=6, gcd(6,6)=6 -> a(1)=6
Links
- For Rassias conjecture: Preda Mihăilescu, Review of Problem Solving and Selected Topics in Number Theory, Newsletter of the European Mathematical Society, March 2011, p. 46.
Crossrefs
Programs
-
Maple
der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); seq(`if`(bigomega(i)=2 and bigomega(der(i)-1)=2 and gcd(i,der(i)-1)>1,i,NULL),i=1..2000);
Comments