A190354 Primes p such that p,q,r,s are consecutive primes and 2p+9, 2q+9, 2r+9, 2s+9 are also primes.
887, 907, 4211, 6569, 8447, 23339, 23357, 30809, 33427, 33937, 38839, 57529, 57557, 57859, 70271, 77621, 77641, 77647, 77659, 80747, 86587, 87691, 109537, 115769, 116041, 117251, 160681, 192781, 207797, 217387, 228257, 228281, 232457, 244339
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA023207 := proc(n) isprime(n) and isprime(2*n+9) ; end proc: isA190354 := proc(n) local q,r,s ; if isprime(n) then q := nextprime(n) ; r := nextprime(q) ; s := nextprime(r) ; isA023207(n) and isA023207(q) and isA023207(r) and isA023207(s) ; else return false; end if; end proc: for i from 1 do p := ithprime(i) ; if isA190354(p) then print(p) ; end if; end do: # R. J. Mathar, Jun 02 2011
-
Mathematica
p2Q[n_]:=And@@PrimeQ[2#+9&/@n]; Transpose[Select[Partition[Prime[ Range[22000]],4,1],p2Q]][[1]] (* Harvey P. Dale, Jun 10 2011 *)
-
PARI
old(p,k)=while(k--,p=precprime(p-1));p; k=0;forprime(p=2, 1e6,if(isprime(p+p+9),if(k++>3,print1(old(p,4)", ")),k=0))
Comments