cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190378 Numbers with prime factorization p*q*r*s*t*u^3 (where p, q, r, s, t, u are distinct primes).

Original entry on oeis.org

120120, 157080, 175560, 185640, 207480, 212520, 251160, 267960, 270270, 271320, 286440, 291720, 316680, 326040, 328440, 338520, 341880, 353430, 367080, 378840, 394680, 395010, 397320, 404040, 408408, 414120, 417690, 426360, 434280, 442680
Offset: 1

Views

Author

Keywords

Examples

			From _Petros Hadjicostas_, Oct 26 2019: (Start)
a(1) = (2^3)*3*5*7*11*13 = 120120;
a(2) = (2^3)*3*5*7*11*17 = 157080,
a(3) = (2^3)*3*5*7*11*19 = 175560;
a(4) = (2^3)*3*5*7*13*17 = 185640;
a(5) = (2^3)*3*5*7*13*19 = 207480;
a(6) = (2^3)*3*5*7*11*23 = 212520;
a(7) = (2^3)*3*5*7*13*23 = 251160;
a(8) = (2^3)*3*5*7*11*29 = 267960;
a(9) = 2*(3^3)*5*7*11*13 = 270270.
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,1,1,3};Select[Range[1000000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3,t4,t5); forprime(p=2,sqrtnint(lim\2310, 3), t1=p^3; forprime(q=2,lim\(210*t1), if(q==p, next); t2=q*t1; forprime(r=2,lim\(30*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\(6*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2,lim\(2*t4), if(t==p || t==q || t==r || t==s, next); t5=t*t4; forprime(u=2,lim\t5, if(u==p || u==q || u==r || u==s || u==t, next); listput(v, t5*u))))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

Extensions

Name edited by Petros Hadjicostas, Oct 26 2019