A190387 Numbers with prime factorization pq^2r^2s^2t^2.
485100, 573300, 749700, 762300, 837900, 1014300, 1064700, 1067220, 1278900, 1367100, 1415700, 1490580, 1631700, 1673100, 1778700, 1808100, 1820700, 1851300, 1896300, 2069100, 2072700, 2274300, 2337300, 2484300, 2504700, 2548980, 2585700
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes, Prime Signatures
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,2,2,2};Select[Range[4000000],f] Take[(Times@@(#^{1,2,2,2,2}))&/@Flatten[Permutations[#]&/@Subsets[ Prime[ Range[ 20]],{5}],1]//Union,50] (* Harvey P. Dale, Jan 18 2020 *)
-
PARI
list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p=2,sqrtint(lim\6300), t1=p^2; forprime(q=2,sqrtint(lim\(180*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,sqrtint(lim\(12*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2,sqrtint(lim\(2*t3)), if(s==p || s==q || s==r, next); t4=s^2*t3; forprime(t=2,lim\t4, if(t==p || t==q || t==r || t==s, next); listput(v, t4*t)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016