A190404 Decimal expansion of (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers); based on row 1 of the natural number array, A000027.
8, 2, 0, 8, 1, 6, 2, 8, 0, 3, 2, 7, 5, 7, 6, 9, 3, 3, 1, 4, 6, 9, 2, 1, 3, 8, 5, 1, 1, 2, 7, 1, 4, 7, 1, 7, 1, 1, 3, 0, 3, 0, 7, 6, 8, 9, 7, 8, 3, 6, 9, 8, 7, 3, 9, 0, 2, 3, 2, 5, 8, 1, 1, 1, 9, 0, 0, 7, 2, 3, 0, 1, 8, 6, 6, 6, 7, 5, 8, 8, 7, 8, 0, 0, 1, 8, 2, 0, 8, 5, 8, 1, 1, 6, 7, 9, 5, 6, 6, 5, 4, 3, 0, 4, 4, 8, 6, 7, 6, 5, 8, 1, 7, 1, 8, 0, 9, 7, 3, 0
Offset: 0
Examples
0.820816280327576933146921385113...
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
f[i_, j_] := i + (j + i - 2)(j + i - 1)/2; TableForm[Table[f[i,j],{i,1,10},{j,1,10}]] (* A000027 *) r[i_] := Sum[2^-f[i, j], {j,1,400}]; (* C(row i) *) c[j_] := Sum[2^-f[i,j], {i,1,400}]; (* C(col j) *) d[h_] := Sum[2^-f[i,i+h-1], {i,1,200}]; (* C(udiag h) *) e[h_] := Sum[2^-f[i+h,i], {i,1,200}]; (* C(ldiag h) *) RealDigits[r[1], 10, 120, -1] (* A190404 *) N[r[1], 30] N[r[2], 30] N[r[3], 30] N[r[4], 30] N[r[5], 30] N[r[6], 30] RealDigits[c[1], 10, 120, -1] (* A190405 *) N[c[1], 20] N[c[2], 20] N[c[3], 20] N[c[4], 20] N[c[5], 20] N[c[6], 20] RealDigits[d[1], 10, 20, -1] (* A190406 *) N[d[1], 20] N[d[2], 20] N[d[3], 20] N[d[4], 20] N[d[5], 20] N[d[6], 20] RealDigits[e[1], 10, 20, -1] (* A190407 *) N[e[1], 20] N[e[2], 20] N[e[3], 20] N[e[4], 20] N[e[5], 20] N[e[6], 20]
-
Sage
def A190404(b): # Generate the constant with b bits of precision return N(sum([(1/2)^(1+j*(j+1)/2) for j in range(1,b)])+1/2,b) A190404(409) # Danny Rorabaugh, Mar 25 2015
Formula
Equals Product_{k>=1} 1 - 1/(2^(2*k + 1) - 1). - Antonio GraciĆ” Llorente, Oct 01 2024
Equals A299998/2. - Hugo Pfoertner, Oct 01 2024
Comments