cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190404 Decimal expansion of (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers); based on row 1 of the natural number array, A000027.

Original entry on oeis.org

8, 2, 0, 8, 1, 6, 2, 8, 0, 3, 2, 7, 5, 7, 6, 9, 3, 3, 1, 4, 6, 9, 2, 1, 3, 8, 5, 1, 1, 2, 7, 1, 4, 7, 1, 7, 1, 1, 3, 0, 3, 0, 7, 6, 8, 9, 7, 8, 3, 6, 9, 8, 7, 3, 9, 0, 2, 3, 2, 5, 8, 1, 1, 1, 9, 0, 0, 7, 2, 3, 0, 1, 8, 6, 6, 6, 7, 5, 8, 8, 7, 8, 0, 0, 1, 8, 2, 0, 8, 5, 8, 1, 1, 6, 7, 9, 5, 6, 6, 5, 4, 3, 0, 4, 4, 8, 6, 7, 6, 5, 8, 1, 7, 1, 8, 0, 9, 7, 3, 0
Offset: 0

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Suppose that F={f(i,j): i>=1, j>=1} is an array of positive integers such that every positive integer occurs exactly once in F.
Let G=G(F) denote the array defined by g(i,j)=(1/2)^f(i,j);
R(i)=Sum_{j>=1} g(i,j); i-th row sum of G;
C(j)=Sum_{i>=1} g(i,j); j-th column sum of G;
U(j)=Sum_{i>=1} g(i,i+j-1); j-th upper diagonal sum of G;
L(i)=Sum_{j>=1} g(i+j,j); i-th lower diagonal sum of G;
R(odds)=Sum_{i>=1} R(2i-1); sum, odd numbered rows of G;
R(evens)=Sum_{i>=1} R(2i); sum, even numbered rows of G;
C(odds)=Sum_{j>=1} R(2j-1); sum, odd numbered cols of G;
C(evens)=Sum_{j>=1} R(2j); sum, even numbered cols of G;
UT=Sum_{j>=1} U(j); sum, upper triangular subarray of G;
LT=Sum_{i>=1} L(i); sum, lower triangular subarray of G.
...
Note that R(odds)+R(evens)=C(odds)+C(evens)=UT+LT=1.
...
For the natural number array F=A000027:
R(1)=0.820816280327576933146921385113... (A190404)
R(2)=0.160408140163788466573460692556...
R(3)=0.0177040700818942332867303462782...
R(4)=0.00103953504094711664336517313909...
R(5)=0.0000314862704735583216825865695447...
...
R(odds)=0.838551840434481240061632331355800... (A190408)
R(evens)=0.161448159565518759938367668644199...(A190409)
...
C(1)=0.64163256065515386629... (A190405)
C(2)=0.28326512131030773259...
C(3)=0.066530242620615465175...
C(4)=0.0080604852412309303507...
C(5)=0.00049597048246186070148...
...
C(odds)=0.7086590131172367153696485920526...(A190410)
C(evens)=0.29134098688276328463035140794... (A190411)
...
D(1)=0.53137210011527713548... (A190406)
D(2)=0.25391006493009715683...
D(3)=0.062744200230554270960...
D(4)=0.0078201298601943136650...
D(5)=0.00048840046110854191952...
...
E(1)=0.12695503246504857842... (A190407)
E(2)=0.015686050057638567740...
E(3)=0.00097751623252428920813...
E(4)=0.000030525028819283869970...
E(5)=0.00000047686626214460406264...
...
UT=0.8563503956097795739814618239914245448... (A190412)
LT=0.1436496043902204260185381760085754551... (A190415)

Examples

			0.820816280327576933146921385113...
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := i + (j + i - 2)(j + i - 1)/2;
    TableForm[Table[f[i,j],{i,1,10},{j,1,10}]] (* A000027 *)
    r[i_] := Sum[2^-f[i, j], {j,1,400}];    (* C(row i) *)
    c[j_] := Sum[2^-f[i,j], {i,1,400}];     (* C(col j) *)
    d[h_] := Sum[2^-f[i,i+h-1], {i,1,200}]; (* C(udiag h) *)
    e[h_] := Sum[2^-f[i+h,i], {i,1,200}];   (* C(ldiag h) *)
    RealDigits[r[1], 10, 120, -1]  (* A190404 *)
    N[r[1], 30]
    N[r[2], 30]
    N[r[3], 30]
    N[r[4], 30]
    N[r[5], 30]
    N[r[6], 30]
    RealDigits[c[1], 10, 120, -1] (* A190405 *)
    N[c[1], 20]
    N[c[2], 20]
    N[c[3], 20]
    N[c[4], 20]
    N[c[5], 20]
    N[c[6], 20]
    RealDigits[d[1], 10, 20, -1] (* A190406 *)
    N[d[1], 20]
    N[d[2], 20]
    N[d[3], 20]
    N[d[4], 20]
    N[d[5], 20]
    N[d[6], 20]
    RealDigits[e[1], 10, 20, -1] (* A190407 *)
    N[e[1], 20]
    N[e[2], 20]
    N[e[3], 20]
    N[e[4], 20]
    N[e[5], 20]
    N[e[6], 20]
  • Sage
    def A190404(b):  # Generate the constant with b bits of precision
        return N(sum([(1/2)^(1+j*(j+1)/2) for j in range(1,b)])+1/2,b)
    A190404(409) # Danny Rorabaugh, Mar 25 2015

Formula

A190404: (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers).
A190405: Sum_{k>=1} (1/2)^T(k), where T=A000217.
A190406: Sum_{k>=1} (1/2)^S(k-1), where S=A001844 (centered square numbers).
A190407: Sum_{k>=1} (1/2)^V(k), where V=A058331 (1+2*k^2).
Equals Product_{k>=1} 1 - 1/(2^(2*k + 1) - 1). - Antonio GraciĆ” Llorente, Oct 01 2024
Equals A299998/2. - Hugo Pfoertner, Oct 01 2024