cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A190427 a(n) = [(b*n+c)*r] - b*[n*r] - [c*r], where (r,b,c)=(golden ratio,2,1) and []=floor.

Original entry on oeis.org

1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Write a(n) = [(b*n+c)*r] - b*[n*r] - [c*r]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,0): A078588, A005653, A005652
(golden ratio,2,1): A190427 - A190430
(golden ratio,3,0): A140397 - A190400
(golden ratio,3,1): A140431 - A190435
(golden ratio,3,2): A140436 - A190439

Examples

			a(1)=[3r]-2[r]-1=4-3-1=1.
a(2)=[5r]-2[2r]-1=8-6-1=1.
a(3)=[7r]-2[3r]-1=11-8-1=2.
		

Crossrefs

Programs

  • Magma
    [Floor((2*n+1)*(1+Sqrt(5))/2) - 2*Floor(n*(1+Sqrt(5))/2) - 1: n in [1..100]]; // G. C. Greubel, Apr 06 2018
  • Mathematica
    r = GoldenRatio; b = 2; c = 1;
    f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
    t = Table[f[n], {n, 1, 320}] (* A190427 *)
    Flatten[Position[t, 0]] (* A190428 *)
    Flatten[Position[t, 1]] (* A190429 *)
    Flatten[Position[t, 2]] (* A190430 *)
    Table[Floor[(2*n+1)*GoldenRatio] - 2*Floor[n*GoldenRatio] -1, {n,1,100}] (* G. C. Greubel, Apr 06 2018 *)
  • PARI
    for(n=1,100, print1(floor((2*n+1)*(1+sqrt(5))/2) - 2*floor(n*(1+sqrt(5))/2) - 1, ", ")) \\ G. C. Greubel, Apr 06 2018
    
  • Python
    from mpmath import mp, phi
    from sympy import floor
    mp.dps=100
    def a(n): return floor((2*n + 1)*phi) - 2*floor(n*phi) - 1
    print([a(n) for n in range(1, 132)]) # Indranil Ghosh, Jul 02 2017
    

Formula

a(n) = [(2*n+1)*r] - 2*[n*r] - 1, where r=(1+sqrt(5))/2.

A190430 Positions of 2 in A190427.

Original entry on oeis.org

3, 6, 8, 11, 16, 19, 21, 24, 29, 32, 37, 40, 42, 45, 50, 53, 55, 58, 61, 63, 66, 71, 74, 76, 79, 84, 87, 92, 95, 97, 100, 105, 108, 110, 113, 116, 118, 121, 126, 129, 131, 134, 139, 142, 144, 147, 150, 152, 155, 160, 163, 165, 168, 173, 176, 181, 184, 186, 189, 194, 197, 199, 202, 205, 207, 210, 215
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

See A190427.

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; b = 2; c = 1;
    f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
    t = Table[f[n], {n, 1, 320}] (* A194277 *)
    Flatten[Position[t, 0]] (* A190428 *)
    Flatten[Position[t, 1]] (* A190429 *)
    Flatten[Position[t, 2]] (* A190430 *)

A190429 Positions of 1 in A190427.

Original entry on oeis.org

1, 2, 4, 7, 9, 12, 14, 15, 17, 20, 22, 23, 25, 27, 28, 30, 33, 35, 36, 38, 41, 43, 44, 46, 48, 49, 51, 54, 56, 57, 59, 62, 64, 67, 69, 70, 72, 75, 77, 78, 80, 82, 83, 85, 88, 90, 91, 93, 96, 98, 101, 103, 104, 106, 109, 111, 112, 114, 117, 119, 122, 124, 125, 127, 130, 132, 133, 135, 137, 138, 140, 143, 145, 146, 148, 151, 153, 156, 158
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

See A190427.

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; b = 2; c = 1;
    f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
    t = Table[f[n], {n, 1, 320}] (* A190427 *)
    Flatten[Position[t, 0]] (* A190428 *)
    Flatten[Position[t, 1]] (* A190429 *)
    Flatten[Position[t, 2]] (* A190430 *)

A190451 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,2) and []=floor.

Original entry on oeis.org

2, 1, 3, 2, 0, 3, 1, 4, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 3, 2, 0, 3, 1, 0
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,0): A078588, A005653, A005652
(golden ratio,2,1): A190427-A190430
(golden ratio,3,0): A140397-A190400
(golden ratio,3,1): A140431-A190435
(golden ratio,3,2): A140436-A190439

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; b = 4; c = 2;
    f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
    t = Table[f[n], {n, 1, 320}]
    Flatten[Position[t, 0]]
    Flatten[Position[t, 1]]
    Flatten[Position[t, 2]]
    Flatten[Position[t, 3]]
    Flatten[Position[t, 4]]
Showing 1-4 of 4 results.