A035513 Wythoff array read by falling antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1
A190427 a(n) = [(b*n+c)*r] - b*[n*r] - [c*r], where (r,b,c)=(golden ratio,2,1) and []=floor.
1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2
Offset: 1
Keywords
Comments
Write a(n) = [(b*n+c)*r] - b*[n*r] - [c*r]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
Examples
a(1)=[3r]-2[r]-1=4-3-1=1. a(2)=[5r]-2[2r]-1=8-6-1=1. a(3)=[7r]-2[3r]-1=11-8-1=2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Floor((2*n+1)*(1+Sqrt(5))/2) - 2*Floor(n*(1+Sqrt(5))/2) - 1: n in [1..100]]; // G. C. Greubel, Apr 06 2018
-
Mathematica
r = GoldenRatio; b = 2; c = 1; f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; t = Table[f[n], {n, 1, 320}] (* A190427 *) Flatten[Position[t, 0]] (* A190428 *) Flatten[Position[t, 1]] (* A190429 *) Flatten[Position[t, 2]] (* A190430 *) Table[Floor[(2*n+1)*GoldenRatio] - 2*Floor[n*GoldenRatio] -1, {n,1,100}] (* G. C. Greubel, Apr 06 2018 *)
-
PARI
for(n=1,100, print1(floor((2*n+1)*(1+sqrt(5))/2) - 2*floor(n*(1+sqrt(5))/2) - 1, ", ")) \\ G. C. Greubel, Apr 06 2018
-
Python
from mpmath import mp, phi from sympy import floor mp.dps=100 def a(n): return floor((2*n + 1)*phi) - 2*floor(n*phi) - 1 print([a(n) for n in range(1, 132)]) # Indranil Ghosh, Jul 02 2017
Formula
a(n) = [(2*n+1)*r] - 2*[n*r] - 1, where r=(1+sqrt(5))/2.
A190430 Positions of 2 in A190427.
3, 6, 8, 11, 16, 19, 21, 24, 29, 32, 37, 40, 42, 45, 50, 53, 55, 58, 61, 63, 66, 71, 74, 76, 79, 84, 87, 92, 95, 97, 100, 105, 108, 110, 113, 116, 118, 121, 126, 129, 131, 134, 139, 142, 144, 147, 150, 152, 155, 160, 163, 165, 168, 173, 176, 181, 184, 186, 189, 194, 197, 199, 202, 205, 207, 210, 215
Offset: 1
Keywords
Comments
See A190427.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
A190428 Positions of 0 in A190427.
5, 10, 13, 18, 26, 31, 34, 39, 47, 52, 60, 65, 68, 73, 81, 86, 89, 94, 99, 102, 107, 115, 120, 123, 128, 136, 141, 149, 154, 157, 162, 170, 175, 178, 183, 188, 191, 196, 204, 209, 212, 217, 225, 230, 233, 238, 243, 246, 251, 259, 264, 267, 272, 280, 285, 293, 298, 301, 306, 314, 319
Offset: 1
Keywords
Comments
See A190427.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions