cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190527 Primes of the form p^4 + p^3 + p^2 + p + 1, where p is prime.

Original entry on oeis.org

31, 2801, 30941, 88741, 292561, 732541, 3500201, 28792661, 39449441, 48037081, 262209281, 1394714501, 2666986681, 3276517921, 4802611441, 5908670381, 12936304421, 16656709681, 19408913261, 24903325661, 37226181521, 43713558101, 52753304641, 64141071121, 96427561501, 100648118041
Offset: 1

Views

Author

Bernard Schott, Dec 20 2012

Keywords

Comments

These primes are generated by exactly A065509, cf. 2nd formula.
These numbers are repunit primes 11111_p, so they are Brazilian primes (A085104).
When p^4 + p^3 + p^2 + p + 1 = sigma(p^4) is prime, then it equals A193574(p^4), so that this sequence is a subsequence of A193574; by definition it is also a subsequence of A053699 and A131992. - Hartmut F. W. Hoft, May 05 2017

Examples

			a(3) = 30941 = 11111_13 = 13^4 + 13^3 + 13^2 + 13^1 + 1 is prime.
		

Crossrefs

Cf. A049409 (n^4 + ... + 1 is prime), A065509 (primes among these n), A193574.
Subsequence of A088548 (primes n^4 + ... + 1) and A085104 ("Brazilian" primes, of the form 1 + n + n^2 + ... + n^k).
Intersection of A000040 (primes) and A131992 (p^4 + ... + 1), subsequence of A053699 (n^4 + ... + 1).

Programs

  • Magma
    [p: p in PrimesUpTo(600) | IsPrime(p) where p is p^4 +p^3+p^2+p+1]; // Vincenzo Librandi, May 06 2017
    
  • Mathematica
    a190527[n_] := Select[Map[(Prime[#]^5-1)/(Prime[#]-1)&, Range[n]], PrimeQ]
    a190527[100] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
    Select[#^4 + #^3 + #^2 + # + 1 &/@Prime[Range[100]], PrimeQ] (* Vincenzo Librandi, May 06 2017 *)
  • PARI
    [q|p<-primes(100),ispseudoprime(q=(p^5-1)\(p-1))]
    A190527_vec(N)=[(p^5-1)\(p-1)|p<-A065509_vec(N)] \\ M. F. Hasler, Mar 03 2020

Formula

a(n) = A193574(A065509(n)^4). - Hartmut F. W. Hoft, May 08 2017
a(n) = A053699(A065509(n)) = A000203(A065509(n)^4). - M. F. Hasler, Mar 03 2020

Extensions

a(7) corrected and a(18)-a(26) added by Hartmut F. W. Hoft, May 05 2017
Edited by M. F. Hasler, Mar 06 2020