A190527 Primes of the form p^4 + p^3 + p^2 + p + 1, where p is prime.
31, 2801, 30941, 88741, 292561, 732541, 3500201, 28792661, 39449441, 48037081, 262209281, 1394714501, 2666986681, 3276517921, 4802611441, 5908670381, 12936304421, 16656709681, 19408913261, 24903325661, 37226181521, 43713558101, 52753304641, 64141071121, 96427561501, 100648118041
Offset: 1
Keywords
Examples
a(3) = 30941 = 11111_13 = 13^4 + 13^3 + 13^2 + 13^1 + 1 is prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1100
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(600) | IsPrime(p) where p is p^4 +p^3+p^2+p+1]; // Vincenzo Librandi, May 06 2017
-
Mathematica
a190527[n_] := Select[Map[(Prime[#]^5-1)/(Prime[#]-1)&, Range[n]], PrimeQ] a190527[100] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *) Select[#^4 + #^3 + #^2 + # + 1 &/@Prime[Range[100]], PrimeQ] (* Vincenzo Librandi, May 06 2017 *)
-
PARI
[q|p<-primes(100),ispseudoprime(q=(p^5-1)\(p-1))] A190527_vec(N)=[(p^5-1)\(p-1)|p<-A065509_vec(N)] \\ M. F. Hasler, Mar 03 2020
Formula
Extensions
a(7) corrected and a(18)-a(26) added by Hartmut F. W. Hoft, May 05 2017
Edited by M. F. Hasler, Mar 06 2020
Comments