cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190531 Number of idempotents in Identity Difference Partial Transformation semigroup.

Original entry on oeis.org

2, 5, 17, 57, 185, 593, 1901, 6121, 19793, 64161, 208085, 674105, 2179001, 7023409, 22566269, 72268809, 230696609, 734153537, 2329503653, 7371475033, 23267249417, 73268609745, 230224239437, 721965697577, 2259855722225
Offset: 1

Views

Author

Adeniji, Adenike, Jun 04 2011

Keywords

Comments

IDP_n is a semigroup with the non-isolation property and E(IDP_n) denotes the set of idempotents (satisfying e^2 = e) in IDP_n.
#E(IDP_n) is the number of idempotent elements in the semigroup IDP_n for each n in N. E(IDP_n) is a subset of partial transformation semigroup having the property that the difference in the image, Im(alpha), is not greater than 1 and e^2 = e for each e in IDP_n.

Examples

			Example: For n=4, #IDP_n = 3*9 + 4*8 - 4 + 2 = 27 + 32 - 2 = 57
		

Crossrefs

Cf. A189890.

Programs

  • Mathematica
    LinearRecurrence[{12,-58,144,-193,132,-36},{2,5,17,57,185,593},30] (* Harvey P. Dale, Apr 11 2020 *)

Formula

#IDP_n = (n-1)*3^(n-2) + n*2^(n-1) - n + 2.
G.f.: -x*(-2+19*x-73*x^2+145*x^3-153*x^4+68*x^5) / ( (x-1)^2*(3*x-1)^2*(2*x-1)^2 ). - R. J. Mathar, Jun 19 2011