cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Adeniji, Adenike

Adeniji, Adenike's wiki page.

Adeniji, Adenike has authored 8 sequences.

A191821 a(n) = n*(2^n - n + 1) + 2^(n-1)*(n^2 - 3*n + 2).

Original entry on oeis.org

2, 6, 26, 100, 332, 994, 2774, 7368, 18872, 47014, 114578, 274300, 647012, 1507146, 3473198, 7929616, 17956592, 40369870, 90177194, 200277636, 442498652, 973078066, 2130705926, 4647288280, 10099883432, 21877489014, 47244639554, 101737037068
Offset: 1

Author

Adeniji, Adenike, Jun 17 2011

Keywords

Comments

Conjecture: generating function = -((2 (-1+6 x-19 x^2+31 x^3-22 x^4+4 x^5))/(1-3 x+2 x^2)^3) - Harvey P. Dale, May 10 2021

Crossrefs

Programs

  • Magma
    [n*(2^n-n+1)+2^(n-1)*(n^2-3*n+2): n in [1..40]]; // Vincenzo Librandi, Nov 25 2011
  • Mathematica
    LinearRecurrence[{9,-33,63,-66,36,-8},{2,6,26,100,332,994},50] (* Vincenzo Librandi, Nov 25 2011 *)
    Table[n(2^n-n+1)+2^(n-1) (n^2-3n+2),{n,30}] (* Harvey P. Dale, May 10 2021 *)
  • PARI
    a(n)=(n^2-n+2)<<(n-1)-n*(n-1) \\ Charles R Greathouse IV, Jul 13 2011
    

Formula

G.f.: -2*x*(-1 + 6*x - 19*x^2 + 31*x^3 - 22*x^4 + 4*x^5) / ( (2*x-1)^3*(x-1)^3 ). - R. J. Mathar, Aug 26 2011

A190531 Number of idempotents in Identity Difference Partial Transformation semigroup.

Original entry on oeis.org

2, 5, 17, 57, 185, 593, 1901, 6121, 19793, 64161, 208085, 674105, 2179001, 7023409, 22566269, 72268809, 230696609, 734153537, 2329503653, 7371475033, 23267249417, 73268609745, 230224239437, 721965697577, 2259855722225
Offset: 1

Author

Adeniji, Adenike, Jun 04 2011

Keywords

Comments

IDP_n is a semigroup with the non-isolation property and E(IDP_n) denotes the set of idempotents (satisfying e^2 = e) in IDP_n.
#E(IDP_n) is the number of idempotent elements in the semigroup IDP_n for each n in N. E(IDP_n) is a subset of partial transformation semigroup having the property that the difference in the image, Im(alpha), is not greater than 1 and e^2 = e for each e in IDP_n.

Examples

			Example: For n=4, #IDP_n = 3*9 + 4*8 - 4 + 2 = 27 + 32 - 2 = 57
		

Crossrefs

Cf. A189890.

Programs

  • Mathematica
    LinearRecurrence[{12,-58,144,-193,132,-36},{2,5,17,57,185,593},30] (* Harvey P. Dale, Apr 11 2020 *)

Formula

#IDP_n = (n-1)*3^(n-2) + n*2^(n-1) - n + 2.
G.f.: -x*(-2+19*x-73*x^2+145*x^3-153*x^4+68*x^5) / ( (x-1)^2*(3*x-1)^2*(2*x-1)^2 ). - R. J. Mathar, Jun 19 2011

A189826 a(n) = (3^n-n)*(n-1) - 2^n*(n-2).

Original entry on oeis.org

2, 7, 40, 199, 856, 3359, 12440, 44335, 153808, 523159, 1752928, 5804759, 19041608, 61981807, 200458504, 644783071, 2064276256, 6581953703, 20911793168, 66230028871, 209167217752, 658918365247, 2070973772920, 6495510239759, 20334154874096, 63545035094839
Offset: 1

Author

Adeniji, Adenike Apr 28 2011

Keywords

Comments

Previous name was: Identity difference partial transformation semigroup, IDP_n is obtained by taking the absolute value of the difference between the max(Im(alpha)) and min(Im(alpha)) <= 1. The number of elements for each n is denoted by #IDP_n.

Examples

			For n=4, #IDP_n = 199.
		

Programs

  • Magma
    [(3^n-n)*(n-1)-2^n*(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 19 2011
    
  • Mathematica
    LinearRecurrence[{13,-70,202,-337,325,-168,36},{2,7,40,199,856,3359,12440},30] (* Harvey P. Dale, Apr 03 2016 *)
  • PARI
    a(n) = (3^n-n)*(n-1)-2^n*(n-2); \\ Altug Alkan, Sep 20 2018

Formula

a(n) = (3^n-n)*(n-1) - 2^n*(n-2).
G.f.: -x*(2 - 19*x + 89*x^2 - 235*x^3 + 329*x^4 - 210*x^5 + 36*x^6) / ( (3*x-1)^2 *(2*x-1)^2 *(x-1)^3 ). - R. J. Mathar, Jun 20 2011

Extensions

Simpler name using formula from Joerg Arndt, Sep 20 2018

A189890 a(n) = (n^3 - 2*n^2 + 3*n + 2)/2.

Original entry on oeis.org

2, 4, 10, 23, 46, 82, 134, 205, 298, 416, 562, 739, 950, 1198, 1486, 1817, 2194, 2620, 3098, 3631, 4222, 4874, 5590, 6373, 7226, 8152, 9154, 10235, 11398, 12646, 13982, 15409, 16930, 18548, 20266, 22087, 24014, 26050, 28198, 30461, 32842, 35344, 37970, 40723, 43606, 46622
Offset: 1

Author

Adeniji, Adenike and Samuel Makanjuola(somakanjuola(AT)unilorin.edu.ng), Apr 30 2011

Keywords

Comments

Order preserving identity difference partial one - one transformation semigroup, OIDI_n is defined if for each transformation, alpha, x<= y implies xalpha <= yalpha, for all x,y in X_n (set of natural numbers) and also the absolute value of the difference between max(Im(alpha)) and min(Im(alpha)) is less than or equal to one with non-isolation property.

Examples

			For n = 4, a(4) = (4^3-2*4^2+3*4+2)/2 = 46/2 = 23.
		

Crossrefs

Programs

  • Magma
    [(n^3-2*n^2+3*n+2)/2: n in [1..50]]; // Vincenzo Librandi, May 07 2011
    
  • Mathematica
    Table[(n^3-2*n^2+3*n+2)/2, {n,1,50}] (* or *) LinearRecurrence[{4,-6,4, -1}, {2,4,10,23}, 50] (* G. C. Greubel, Jan 13 2018 *)
  • PARI
    a(n)=(n^3-2*n^2+3*n+2)/2 \\ Charles R Greathouse IV, Oct 16 2015

Formula

G.f.: -x*(-2+4*x-6*x^2+x^3) / (x-1)^4. - R. J. Mathar, Jun 20 2011
E.g.f.: 4*(-2 + (2 + 2*x + x^2 + x^3)*exp(x)). - G. C. Greubel, Jan 13 2018
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 23 2021

A188716 a(n) = n + (n-1)*(2^n-2).

Original entry on oeis.org

1, 1, 4, 15, 46, 125, 316, 763, 1786, 4089, 9208, 20471, 45046, 98293, 212980, 458739, 983026, 2097137, 4456432, 9437167, 19922926, 41943021, 88080364, 184549355, 385875946, 805306345, 1677721576, 3489660903, 7247757286, 15032385509, 31138512868, 64424509411, 133143986146, 274877906913, 566935683040, 1168231104479
Offset: 0

Author

Adeniji, Adenike and Samuel Makanjuola (somakanjuola(AT)unilorin.edu.ng) Apr 14 2011

Keywords

Comments

Number of elements in the semigroup IDT_n.

Crossrefs

Programs

  • Magma
    [n + (n-1)*(2^n-2): n in [0..50]]; // Vincenzo Librandi, May 01 2011
    
  • Mathematica
    Table[n+(n-1)(2^n-2),{n,0,40}] (* or *) LinearRecurrence[{6,-13,12,-4},{1,1,4,15},40] (* Harvey P. Dale, Aug 03 2024 *)
  • PARI
    a(n)=(n-1)<Charles R Greathouse IV, Apr 06 2012

Formula

From Colin Barker, Apr 06 2012: (Start)
a(n) = 6*a(n-1)-13*a(n-2)+12*a(n-3)-4*a(n-4).
G.f.: (1-5*x+11*x^2-8*x^3)/((1-x)^2*(1-2*x)^2). (End)
a(n) = A000337(n) - (n-1). - Andrew Penland , Mar 24 2016
E.g.f.: exp(x)*(2 - x + exp(x)*(2*x - 1)). - Stefano Spezia, Apr 10 2022

Extensions

Edited by N. J. A. Sloane, Apr 23 2011
Offset changed from 1 to 0 by Vincenzo Librandi, May 01 2011

A188377 a(n) = n^3 - 4n^2 + 6n - 2.

Original entry on oeis.org

7, 22, 53, 106, 187, 302, 457, 658, 911, 1222, 1597, 2042, 2563, 3166, 3857, 4642, 5527, 6518, 7621, 8842, 10187, 11662, 13273, 15026, 16927, 18982, 21197, 23578, 26131, 28862, 31777, 34882, 38183, 41686, 45397, 49322, 53467, 57838, 62441, 67282, 72367
Offset: 3

Author

Adeniji, Adenike & Makanjuola, Samuel (somakanjuola(AT)unilorin.edu.ng) Apr 14 2011

Keywords

Comments

Number of nilpotent elements in the identity difference partial one - one transformation semigroup, denoted by N(IDI_n). For n=3, #N(IDI_n) = 7.
a(n+1) is also the Moore lower bound on the order of an (n,7)-cage. - Jason Kimberley, Oct 20 2011

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), this sequence (g=7). - Jason Kimberley, Oct 30 2011

Programs

Formula

a(n+1) = (n+1)^3 - 4*(n+1)^2 + 6*(n+1) - 2
= (n-1)^3 + 2*(n-1)^2 + 2*(n-1) + 2
= 1222 read in base n-1.
- Jason Kimberley, Oct 20 2011
From Colin Barker, Apr 06 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x^3*(7 - 6*x + 7*x^2 - 2*x^3)/(1-x)^4. (End)
E.g.f.: 2 - x - x^2 + exp(x)*(x^3 - x^2 + 3*x - 2). - Stefano Spezia, Apr 09 2022

Extensions

Edited by N. J. A. Sloane, Apr 23 2011

A188947 a(n) = n^3 - 2*n^2 + 2*n + 1.

Original entry on oeis.org

2, 5, 16, 41, 86, 157, 260, 401, 586, 821, 1112, 1465, 1886, 2381, 2956, 3617, 4370, 5221, 6176, 7241, 8422, 9725, 11156, 12721, 14426, 16277, 18280, 20441, 22766, 25261, 27932, 30785, 33826, 37061, 40496, 44137, 47990, 52061, 56356, 60881, 65642, 70645
Offset: 1

Author

Adeniji, Adenike, Apr 14 2011

Keywords

Comments

The original definition was "Identity difference partial one - one transformation semigroup is a semigroup having the property that the difference between max im(alpha) and min im(alpha) is not greater than 1. This is denoted by S = IDI_n for each n." [Needs editing.]
For all n >= 3, a(n) expressed in base n has the three digits n-2, 2, and 1; for example, a(16) in hexadecimal is "E21". For all n >= 3, a(n+1) expressed in base n is "1112". For all n >= 7, a(n+2) expressed in base n is "1465". - Mathew Englander, Jan 07 2021

Crossrefs

Cf. A027444, A053698, A056106 (first differences), A060354, A162607, A188377, A188716.

Programs

Formula

a(n) = (n+1) + n*(n-1)^2 = n^3 - 2*n^2 + 2*n + 1 = 1 + A053698(n-1).
G.f.: ( -x*(-2 + 3*x - 8*x^2 + x^3) ) / ( (x-1)^4 ). - R. J. Mathar, Apr 14 2011
a(n) = A060354(n) + A162607(n+1). - Lechoslaw Ratajczak, Sep 24 2020
E.g.f.: exp(x)*(1 + x)*(1 + x^2) - 1. - Stefano Spezia, Apr 10 2022

Extensions

Edited by N. J. A. Sloane, Apr 23 2011

A188626 a(n) = n + (n-1)*2^(n-2).

Original entry on oeis.org

1, 3, 7, 16, 37, 86, 199, 456, 1033, 2314, 5131, 11276, 24589, 53262, 114703, 245776, 524305, 1114130, 2359315, 4980756, 10485781, 22020118, 46137367, 96469016, 201326617, 419430426, 872415259, 1811939356, 3758096413
Offset: 1

Author

Adeniji, Adenike & Makanjuola, Samuel, Apr 14 2011

Keywords

Comments

Number of idempotent elements in IDT_n (Identity Difference Full Transformation Semigroup), denoted by E(IDT_n).

Examples

			For n = 4, #E(IDT_n)= 16.
		

Programs

  • Magma
    [n + (n-1)*2^(n-2): n in [1..50]]; // G. C. Greubel, Nov 01 2018
  • Mathematica
    Table[n + (n-1)*2^(n-2), {n,1,50}] (* G. C. Greubel, Nov 01 2018 *)
    LinearRecurrence[{6,-13,12,-4},{1,3,7,16},40] (* Harvey P. Dale, Dec 31 2018 *)
  • PARI
    a(n) = n+(n-1)*2^(n-2) \\ Michel Marcus, Jun 29 2013
    

Formula

a(n) = n + (n-1)*2^(n-2).
G.f. x*(1-3*x+2*x^2+x^3) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, Apr 14 2011
E.g.f.: (2*exp(2*x)*x + 4*exp(x)*x - exp(2*x) + 1)/4. - Stefano Spezia, Dec 23 2021