cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A056106 Second spoke of a hexagonal spiral.

Original entry on oeis.org

1, 3, 11, 25, 45, 71, 103, 141, 185, 235, 291, 353, 421, 495, 575, 661, 753, 851, 955, 1065, 1181, 1303, 1431, 1565, 1705, 1851, 2003, 2161, 2325, 2495, 2671, 2853, 3041, 3235, 3435, 3641, 3853, 4071, 4295, 4525, 4761, 5003, 5251, 5505, 5765, 6031, 6303
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

First differences of A027444. - J. M. Bergot, Jun 04 2012
Numbers of the form ((h^2+h+1)^2+(-h^2+h+1)^2+(h^2+h-1)^2)/(h^2-h+1) for h=n-1. - Bruno Berselli, Mar 13 2013
For n > 0: 2*a(n) = A058331(n) + A001105(n) + A001844(n-1) = A251599(3*n-2) + A251599(3*n-1) + A251599(3*n). - Reinhard Zumkeller, Dec 13 2014
For all n >= 6, a(n+1) expressed in base n is "353". - Mathew Englander, Jan 06 2021

Crossrefs

First differences of A053698, A027444, and A188947.
Cf. A113524 (semiprime terms), A002061.
Other spirals: A054552.

Programs

  • Haskell
    a056106 n = n * (3 * n - 1) + 1  -- Reinhard Zumkeller, Dec 13 2014
  • Magma
    I:=[1,3]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+6: n in [1..50]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    Table[3*n^2 - n + 1, {n,0,50}] (* G. C. Greubel, Jul 19 2017 *)
  • PARI
    a(n) = 3*n^2-n+1;
    

Formula

a(n) = 3*n^2 - n + 1.
a(n) = a(n-1) + 6*n - 4 = 2*a(n-1) - a(n-2) + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (1+2*x+3*x^2)*exp(x). - Paul Barry, Mar 13 2003
a(n) = A096777(3*n) for n>0. - Reinhard Zumkeller, Dec 29 2007
G.f.: (1+5*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
a(n) = n*A002061(n+1) - (n-1)*A002061(n). - Bruno Berselli, Jan 15 2013
a(-n) = A056108(n). - Bruno Berselli, Mar 13 2013

A188377 a(n) = n^3 - 4n^2 + 6n - 2.

Original entry on oeis.org

7, 22, 53, 106, 187, 302, 457, 658, 911, 1222, 1597, 2042, 2563, 3166, 3857, 4642, 5527, 6518, 7621, 8842, 10187, 11662, 13273, 15026, 16927, 18982, 21197, 23578, 26131, 28862, 31777, 34882, 38183, 41686, 45397, 49322, 53467, 57838, 62441, 67282, 72367
Offset: 3

Views

Author

Adeniji, Adenike & Makanjuola, Samuel (somakanjuola(AT)unilorin.edu.ng) Apr 14 2011

Keywords

Comments

Number of nilpotent elements in the identity difference partial one - one transformation semigroup, denoted by N(IDI_n). For n=3, #N(IDI_n) = 7.
a(n+1) is also the Moore lower bound on the order of an (n,7)-cage. - Jason Kimberley, Oct 20 2011

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), this sequence (g=7). - Jason Kimberley, Oct 30 2011

Programs

Formula

a(n+1) = (n+1)^3 - 4*(n+1)^2 + 6*(n+1) - 2
= (n-1)^3 + 2*(n-1)^2 + 2*(n-1) + 2
= 1222 read in base n-1.
- Jason Kimberley, Oct 20 2011
From Colin Barker, Apr 06 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x^3*(7 - 6*x + 7*x^2 - 2*x^3)/(1-x)^4. (End)
E.g.f.: 2 - x - x^2 + exp(x)*(x^3 - x^2 + 3*x - 2). - Stefano Spezia, Apr 09 2022

Extensions

Edited by N. J. A. Sloane, Apr 23 2011

A189890 a(n) = (n^3 - 2*n^2 + 3*n + 2)/2.

Original entry on oeis.org

2, 4, 10, 23, 46, 82, 134, 205, 298, 416, 562, 739, 950, 1198, 1486, 1817, 2194, 2620, 3098, 3631, 4222, 4874, 5590, 6373, 7226, 8152, 9154, 10235, 11398, 12646, 13982, 15409, 16930, 18548, 20266, 22087, 24014, 26050, 28198, 30461, 32842, 35344, 37970, 40723, 43606, 46622
Offset: 1

Views

Author

Adeniji, Adenike and Samuel Makanjuola(somakanjuola(AT)unilorin.edu.ng), Apr 30 2011

Keywords

Comments

Order preserving identity difference partial one - one transformation semigroup, OIDI_n is defined if for each transformation, alpha, x<= y implies xalpha <= yalpha, for all x,y in X_n (set of natural numbers) and also the absolute value of the difference between max(Im(alpha)) and min(Im(alpha)) is less than or equal to one with non-isolation property.

Examples

			For n = 4, a(4) = (4^3-2*4^2+3*4+2)/2 = 46/2 = 23.
		

Crossrefs

Programs

  • Magma
    [(n^3-2*n^2+3*n+2)/2: n in [1..50]]; // Vincenzo Librandi, May 07 2011
    
  • Mathematica
    Table[(n^3-2*n^2+3*n+2)/2, {n,1,50}] (* or *) LinearRecurrence[{4,-6,4, -1}, {2,4,10,23}, 50] (* G. C. Greubel, Jan 13 2018 *)
  • PARI
    a(n)=(n^3-2*n^2+3*n+2)/2 \\ Charles R Greathouse IV, Oct 16 2015

Formula

G.f.: -x*(-2+4*x-6*x^2+x^3) / (x-1)^4. - R. J. Mathar, Jun 20 2011
E.g.f.: 4*(-2 + (2 + 2*x + x^2 + x^3)*exp(x)). - G. C. Greubel, Jan 13 2018
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 23 2021

A188716 a(n) = n + (n-1)*(2^n-2).

Original entry on oeis.org

1, 1, 4, 15, 46, 125, 316, 763, 1786, 4089, 9208, 20471, 45046, 98293, 212980, 458739, 983026, 2097137, 4456432, 9437167, 19922926, 41943021, 88080364, 184549355, 385875946, 805306345, 1677721576, 3489660903, 7247757286, 15032385509, 31138512868, 64424509411, 133143986146, 274877906913, 566935683040, 1168231104479
Offset: 0

Views

Author

Adeniji, Adenike and Samuel Makanjuola (somakanjuola(AT)unilorin.edu.ng) Apr 14 2011

Keywords

Comments

Number of elements in the semigroup IDT_n.

Crossrefs

Programs

  • Magma
    [n + (n-1)*(2^n-2): n in [0..50]]; // Vincenzo Librandi, May 01 2011
    
  • Mathematica
    Table[n+(n-1)(2^n-2),{n,0,40}] (* or *) LinearRecurrence[{6,-13,12,-4},{1,1,4,15},40] (* Harvey P. Dale, Aug 03 2024 *)
  • PARI
    a(n)=(n-1)<Charles R Greathouse IV, Apr 06 2012

Formula

From Colin Barker, Apr 06 2012: (Start)
a(n) = 6*a(n-1)-13*a(n-2)+12*a(n-3)-4*a(n-4).
G.f.: (1-5*x+11*x^2-8*x^3)/((1-x)^2*(1-2*x)^2). (End)
a(n) = A000337(n) - (n-1). - Andrew Penland , Mar 24 2016
E.g.f.: exp(x)*(2 - x + exp(x)*(2*x - 1)). - Stefano Spezia, Apr 10 2022

Extensions

Edited by N. J. A. Sloane, Apr 23 2011
Offset changed from 1 to 0 by Vincenzo Librandi, May 01 2011

A191821 a(n) = n*(2^n - n + 1) + 2^(n-1)*(n^2 - 3*n + 2).

Original entry on oeis.org

2, 6, 26, 100, 332, 994, 2774, 7368, 18872, 47014, 114578, 274300, 647012, 1507146, 3473198, 7929616, 17956592, 40369870, 90177194, 200277636, 442498652, 973078066, 2130705926, 4647288280, 10099883432, 21877489014, 47244639554, 101737037068
Offset: 1

Views

Author

Adeniji, Adenike, Jun 17 2011

Keywords

Comments

Conjecture: generating function = -((2 (-1+6 x-19 x^2+31 x^3-22 x^4+4 x^5))/(1-3 x+2 x^2)^3) - Harvey P. Dale, May 10 2021

Crossrefs

Programs

  • Magma
    [n*(2^n-n+1)+2^(n-1)*(n^2-3*n+2): n in [1..40]]; // Vincenzo Librandi, Nov 25 2011
  • Mathematica
    LinearRecurrence[{9,-33,63,-66,36,-8},{2,6,26,100,332,994},50] (* Vincenzo Librandi, Nov 25 2011 *)
    Table[n(2^n-n+1)+2^(n-1) (n^2-3n+2),{n,30}] (* Harvey P. Dale, May 10 2021 *)
  • PARI
    a(n)=(n^2-n+2)<<(n-1)-n*(n-1) \\ Charles R Greathouse IV, Jul 13 2011
    

Formula

G.f.: -2*x*(-1 + 6*x - 19*x^2 + 31*x^3 - 22*x^4 + 4*x^5) / ( (2*x-1)^3*(x-1)^3 ). - R. J. Mathar, Aug 26 2011
Showing 1-5 of 5 results.