cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A145515 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of k^n into powers of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 10, 1, 1, 1, 2, 6, 23, 36, 1, 1, 1, 2, 7, 46, 239, 202, 1, 1, 1, 2, 8, 82, 1086, 5828, 1828, 1, 1, 1, 2, 9, 134, 3707, 79326, 342383, 27338, 1, 1, 1, 2, 10, 205, 10340, 642457, 18583582, 50110484, 692004, 1, 1, 1, 2, 11, 298, 24901, 3649346, 446020582, 14481808030, 18757984046, 30251722, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2008

Keywords

Examples

			A(2,3) = 5, because there are 5 partitions of 3^2=9 into powers of 3: [1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,3], [1,1,1,3,3], [3,3,3], [9].
Square array A(n,k) begins:
  1,  1,   1,    1,     1,      1,  ...
  1,  1,   2,    2,     2,      2,  ...
  1,  1,   4,    5,     6,      7,  ...
  1,  1,  10,   23,    46,     82,  ...
  1,  1,  36,  239,  1086,   3707,  ...
  1,  1, 202, 5828, 79326, 642457,  ...
		

Crossrefs

Row n=3 gives: A189890(k+1).
Main diagonal gives: A145514.
Cf. A007318.

Programs

  • Maple
    b:= proc(n, j, k) local nn;
          nn:= n+1;
          if n<0  then 0
        elif j=0  or n=0 or k<=1 then 1
        elif j=1  then nn
        elif n>=j then (nn-j) *binomial(nn, j) *add(binomial(j, h)
                       /(nn-j+h) *b(j-h-1, j, k) *(-1)^h, h=0..j-1)
                  else b(n, j, k):= b(n-1, j, k) +b(k*n, j-1, k)
          fi
        end:
    A:= (n, k)-> b(1, n, k):
    seq(seq(A(n, d-n), n=0..d), d=0..13);
  • Mathematica
    b[n_, j_, k_] := Module[{nn = n+1}, Which[n < 0, 0, j == 0 || n == 0 || k <= 1, 1, j == 1, nn, n >= j, (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)* b[j-h-1, j, k]*(-1)^h, {h, 0, j-1}], True, b[n, j, k] = b[n-1, j, k] + b[k*n, j-1, k] ] ]; a[n_, k_] := b[1, n, k]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)

Formula

See program.
For k>1: A(n,k) = [x^(k^n)] 1/Product_{j>=0} (1-x^(k^j)).

Extensions

Edited by Alois P. Heinz, Jan 12 2011

A191821 a(n) = n*(2^n - n + 1) + 2^(n-1)*(n^2 - 3*n + 2).

Original entry on oeis.org

2, 6, 26, 100, 332, 994, 2774, 7368, 18872, 47014, 114578, 274300, 647012, 1507146, 3473198, 7929616, 17956592, 40369870, 90177194, 200277636, 442498652, 973078066, 2130705926, 4647288280, 10099883432, 21877489014, 47244639554, 101737037068
Offset: 1

Views

Author

Adeniji, Adenike, Jun 17 2011

Keywords

Comments

Conjecture: generating function = -((2 (-1+6 x-19 x^2+31 x^3-22 x^4+4 x^5))/(1-3 x+2 x^2)^3) - Harvey P. Dale, May 10 2021

Crossrefs

Programs

  • Magma
    [n*(2^n-n+1)+2^(n-1)*(n^2-3*n+2): n in [1..40]]; // Vincenzo Librandi, Nov 25 2011
  • Mathematica
    LinearRecurrence[{9,-33,63,-66,36,-8},{2,6,26,100,332,994},50] (* Vincenzo Librandi, Nov 25 2011 *)
    Table[n(2^n-n+1)+2^(n-1) (n^2-3n+2),{n,30}] (* Harvey P. Dale, May 10 2021 *)
  • PARI
    a(n)=(n^2-n+2)<<(n-1)-n*(n-1) \\ Charles R Greathouse IV, Jul 13 2011
    

Formula

G.f.: -2*x*(-1 + 6*x - 19*x^2 + 31*x^3 - 22*x^4 + 4*x^5) / ( (2*x-1)^3*(x-1)^3 ). - R. J. Mathar, Aug 26 2011

A190531 Number of idempotents in Identity Difference Partial Transformation semigroup.

Original entry on oeis.org

2, 5, 17, 57, 185, 593, 1901, 6121, 19793, 64161, 208085, 674105, 2179001, 7023409, 22566269, 72268809, 230696609, 734153537, 2329503653, 7371475033, 23267249417, 73268609745, 230224239437, 721965697577, 2259855722225
Offset: 1

Views

Author

Adeniji, Adenike, Jun 04 2011

Keywords

Comments

IDP_n is a semigroup with the non-isolation property and E(IDP_n) denotes the set of idempotents (satisfying e^2 = e) in IDP_n.
#E(IDP_n) is the number of idempotent elements in the semigroup IDP_n for each n in N. E(IDP_n) is a subset of partial transformation semigroup having the property that the difference in the image, Im(alpha), is not greater than 1 and e^2 = e for each e in IDP_n.

Examples

			Example: For n=4, #IDP_n = 3*9 + 4*8 - 4 + 2 = 27 + 32 - 2 = 57
		

Crossrefs

Cf. A189890.

Programs

  • Mathematica
    LinearRecurrence[{12,-58,144,-193,132,-36},{2,5,17,57,185,593},30] (* Harvey P. Dale, Apr 11 2020 *)

Formula

#IDP_n = (n-1)*3^(n-2) + n*2^(n-1) - n + 2.
G.f.: -x*(-2+19*x-73*x^2+145*x^3-153*x^4+68*x^5) / ( (x-1)^2*(3*x-1)^2*(2*x-1)^2 ). - R. J. Mathar, Jun 19 2011
Showing 1-3 of 3 results.