cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190621 a(n) = n if n is not divisible by 4, otherwise 0.

Original entry on oeis.org

0, 1, 2, 3, 0, 5, 6, 7, 0, 9, 10, 11, 0, 13, 14, 15, 0, 17, 18, 19, 0, 21, 22, 23, 0, 25, 26, 27, 0, 29, 30, 31, 0, 33, 34, 35, 0, 37, 38, 39, 0, 41, 42, 43, 0, 45, 46, 47, 0, 49, 50, 51, 0, 53, 54, 55, 0, 57, 58, 59, 0, 61, 62, 63, 0, 65, 66, 67, 0, 69, 70, 71, 0, 73, 74, 75, 0, 77, 78, 79, 0, 81, 82, 83, 0, 85, 86
Offset: 0

Views

Author

N. J. A. Sloane, May 14 2011

Keywords

Comments

The sequence is multiplicative.

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 195.

Crossrefs

Cf. A008586, A057427, A166486, A046897 (Mobius Trans.).

Programs

  • Magma
    [n mod 4 ne 0 select n else 0:n in [0..86]]; // Marius A. Burtea, Jan 13 2020
  • Maple
    seq(op([0,i,i+1,i+2]),i=1..100,4); # Robert Israel, Jan 13 2020
    # alternative
    A190621 := proc(n)
        if modp(n,4) <> 0 then
            n;
        else
            0;
        end if;
    end proc:
    seq(A190621(n),n=0..40) ; # R. J. Mathar, May 17 2023
  • Mathematica
    Table[If[Divisible[n,4],0,n],{n,0,90}] (* Harvey P. Dale, Jan 04 2019 *)

Formula

a(n) = n * A166486(n) = n * signum(n mod 4).
G.f.: (x + 2*x^2 + 3*x^3 + 3*x^5 + 2*x^6 + x^7)/(1 - 2*x^4 + x^8). - Robert Israel, Jan 13 2020
Dirichlet g.f.: (1-4^(1-s))*zeta(s-1). - R. J. Mathar, May 17 2023