A190621 a(n) = n if n is not divisible by 4, otherwise 0.
0, 1, 2, 3, 0, 5, 6, 7, 0, 9, 10, 11, 0, 13, 14, 15, 0, 17, 18, 19, 0, 21, 22, 23, 0, 25, 26, 27, 0, 29, 30, 31, 0, 33, 34, 35, 0, 37, 38, 39, 0, 41, 42, 43, 0, 45, 46, 47, 0, 49, 50, 51, 0, 53, 54, 55, 0, 57, 58, 59, 0, 61, 62, 63, 0, 65, 66, 67, 0, 69, 70, 71, 0, 73, 74, 75, 0, 77, 78, 79, 0, 81, 82, 83, 0, 85, 86
Offset: 0
References
- J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 195.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1)
Programs
-
Magma
[n mod 4 ne 0 select n else 0:n in [0..86]]; // Marius A. Burtea, Jan 13 2020
-
Maple
seq(op([0,i,i+1,i+2]),i=1..100,4); # Robert Israel, Jan 13 2020 # alternative A190621 := proc(n) if modp(n,4) <> 0 then n; else 0; end if; end proc: seq(A190621(n),n=0..40) ; # R. J. Mathar, May 17 2023
-
Mathematica
Table[If[Divisible[n,4],0,n],{n,0,90}] (* Harvey P. Dale, Jan 04 2019 *)
Formula
a(n) = n * A166486(n) = n * signum(n mod 4).
G.f.: (x + 2*x^2 + 3*x^3 + 3*x^5 + 2*x^6 + x^7)/(1 - 2*x^4 + x^8). - Robert Israel, Jan 13 2020
Dirichlet g.f.: (1-4^(1-s))*zeta(s-1). - R. J. Mathar, May 17 2023
Comments