cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190725 Diagonal sums of Riordan matrix A118384.

Original entry on oeis.org

1, 3, 14, 69, 355, 1872, 10037, 54459, 298138, 1643565, 9111191, 50739120, 283635481, 1590648819, 8945090870, 50423423685, 284831065723, 1611918320688, 9137141645645, 51869777201595, 294843392318146, 1677980087882013, 9559901907126959
Offset: 0

Views

Author

Emanuele Munarini, May 17 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3+3x-Sqrt[1-6x+x^2])/(2(1+3x+x^2)Sqrt[1-6x+x^2]),{x,0,100}],x]
  • PARI
    x='x+O('x^50); Vec((3+3*x-sqrt(1-6*x+x^2))/(2*(1+3*x+x^2)*sqrt(1-6*x+x^2))) \\ G. C. Greubel, Mar 26 2017

Formula

a(n) = (3*sum((-1)^k*F(2k+1)*d(n-k),k=0..n)-(-1)^n*F(2n+2))/2, where d(n) = central Delannoy number (A001850) and F(n) = Fibonacci number (A000045).
G.f.: (3+3*x-sqrt(1-6*x+x^2))/(2*(1+3*x+x^2)*sqrt(1-6*x+x^2)).
Recurrence: (n^2+11*n+30)*a(n+6)-(3*n^2+29*n+70)*a(n+5)-(17*n^2+177*n+458)*a(n+4)-34*(n+4)*a(n+3)+(17*n^2+95*n+130)*a(n+2)+(3*n^2+19*n+30)*a(n+1)-(n^2+5*n+6)*a(n)=0.
conjecture: n*(2*n-3)*a(n) +(-6*n^2+15*n-8)*a(n-1) +2*(-16*n^2+32*n-11)*a(n-2) +(-6*n^2+9*n-2)*a(n-3) +(2*n-1)*(n-2)*a(n-4) =0. - R. J. Mathar, Jul 24 2012
a(n) ~ sqrt(24+17*sqrt(2))*(3+2*sqrt(2))^n/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 24 2012