A190736 Diagonal sums of the Riordan matrix A121576.
1, 2, 7, 29, 139, 731, 4096, 24005, 145420, 903503, 5726290, 36878978, 240663403, 1587928511, 10575884599, 71005972250, 480071241463, 3265685620913, 22335284505529, 153496543690226, 1059443187603955, 7340794592800628, 51042913856490028
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A121576.
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!((4-5*x-2*x^2-(2+x)*Sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3)))); // G. C. Greubel, Apr 23 2018 -
Mathematica
CoefficientList[Series[(4-5x-2x^2-(2+x)Sqrt[1-8x+4x^2])/(2(1-x+2x^2 +x^3) ),{x,0,22}],x]
-
PARI
x='x+O('x^30); Vec((4-5*x-2*x^2-(2+x)*sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3))) \\ G. C. Greubel, Apr 23 2018
Formula
a(n) = [x^n](1-2*x-2*x^2)*(1+2*x)^(n+1)/((1+2*x-x^2+x^3)(1-x)^(n+1)).
G.f.: (4-5*x-2*x^2-(2+x)*sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3)).
Recurrence: 0 = 6*(n^2+17*n+72)*a(n+9) - (35*n^2+577*n+2376)*a(n+8) - (81*n^2+835*n+1856)*a(n+7) + (101*n^2+1017*n+2164)*a(n+6) - 2*(151*n^2+1883*n+5970)*a(n+5) - 2*(33*n^2+458*n+1528)*a(n+4) + (47*n^2+567*n+1564)*a(n+3) - 2*(7*n^2-16*n-120)*a(n+2) + 4*(3*n^2+8*n+4)*a(n+1) + 8*(n^2+3*n+2)*a(n).
Conjecture: n*(11*n-35)*a(n) + 3*(-33*n^2+149*n-136)*a(n-1) +2*(77*n^2-377*n+396)*a(n-2) +(-209*n^2+1061*n-1200)*a(n-3) +12*(-11*n+30)*a(n-4) +4*(11*n-24)*(n-4)*a(n-5)=0. - R. J. Mathar, Jul 24 2012