cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190737 Diagonal sums of the Riordan matrix A104259.

Original entry on oeis.org

1, 2, 6, 19, 66, 244, 946, 3801, 15697, 66234, 284339, 1237983, 5453611, 24263355, 108865901, 492051006, 2238220336, 10238568080, 47070014643, 217363784060, 1007794226777, 4689545704246, 21893712581740, 102520882301832, 481393173378979
Offset: 0

Views

Author

Emanuele Munarini, May 18 2011

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-2*x^2-Sqrt(1-6*x+5*x^2))/(2*x*(1-2*x+x^2+x^3)))); // G. C. Greubel, Apr 23 2018
  • Mathematica
    CoefficientList[Series[(1-x-2x^2-Sqrt[1-6x+5x^2])/(2x(1-2x+x^2+x^3)),{x,0,24}],x]
  • PARI
    x='x+O('x^30); Vec((1-x-2*x^2-sqrt(1-6*x+5*x^2))/(2*x*(1-2*x +x^2 +x^3))) \\ G. C. Greubel, Apr 23 2018
    

Formula

G.f.: (1-x-2*x^2-sqrt(1-6*x+5*x^2))/(2*x*(1-2*x+x^2+x^3)).
Recurrence: 0 = (n^2+17*n+72)*a(n+8) - (11*n^2+169*n+648)*a(n+7) + 3*(17*n^2+227*n+758)*a(n+6) - 2*(73*n^2+812*n+2259)*a(n+5)
+ 6*(41*n^2+375*n+846)*a(n+4) - (217*n^2+1559*n+2634)*a(n+3) + 3*(17*n^2+29*n-136)*a(n+2) + 10*(5*n^2+43*n+84)*a(n+1) - 25*(n^2+5*n+6)*a(n).
D-finite with recurrence: (n+1)*a(n) +(-8*n+1)*a(n-1) +3*(6*n-5)*a(n-2) +3*(-5*n+8)*a(n-3) +(-n-7)*a(n-4) +5*(n-2)*a(n-5)=0. - R. J. Mathar, Feb 24 2020