cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190792 Primes p=prime(i) such that prime(i+3)-prime(i)=12.

Original entry on oeis.org

17, 19, 29, 31, 41, 59, 61, 67, 71, 127, 227, 229, 269, 271, 347, 431, 607, 641, 1009, 1091, 1277, 1279, 1289, 1291, 1427, 1447, 1487, 1597, 1601, 1607, 1609, 1657, 1777, 1861, 1987, 2129, 2131, 2339, 2371, 2377, 2381, 2539, 2677, 2687, 2707, 2789, 2791
Offset: 1

Views

Author

Zak Seidov, May 20 2011

Keywords

Comments

Minimal distance between prime(i) and prime(i+3) is 12 if all three consecutive prime gaps are different.
There are 6 possible consecutive prime gap configurations:
{2,4,6}, {2,6,4}, {4,2,6}, {4,6,2}, {6,2,4}, and {6,4,2}.
Least prime quartets with such gap configurations are:
{17,19,23,29}->{2,4,6}
{29,31,37,41}->{2,6,4}
{67,71,73,79}->{4,2,6}
{19,23,29,31}->{4,6,2}
{1601,1607,1609,1613}->{6,2,4}
{31,37,41,43}->{6,4,2}.

Crossrefs

Programs

  • Magma
    [NthPrime(i): i in [2..60000] | NthPrime(i+3)-NthPrime(i) eq 12];  // _Bruno Berselli-, May 20 2011
    
  • Mathematica
    p = Prime[Range[1000]]; First /@ Select[Partition[p, 4, 1], Last[#] - First[#] == 12 &] (* T. D. Noe, May 23 2011 *)
  • PARI
    is(n)=if(!isprime(n), return(0)); my(p=nextprime(n+1),q); if(p-n>6, return(0)); q=nextprime(p+1); q-n<11 && nextprime(q+1)-n==12 \\ Charles R Greathouse IV, Sep 14 2015