cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190867 Count of the 3-full divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

R. J. Mathar, May 27 2011

Keywords

Comments

a(n) is the number of divisors d of n with d an element of A036966.
This is the 3-full analog of the 2-full case A005361.

Examples

			a(16)=3 because the divisors of 16 are {1,2,4,8,16}, and three of these are 3-full: 1, 8=2^3 and 16=2^4.
		

Crossrefs

Programs

  • Maple
    f:= n -> convert(map(t -> max(1,t[2]-1), ifactors(n)[2]),`*`):
    map(f, [$1..200]); # Robert Israel, Jul 19 2017
  • Mathematica
    Table[Product[Max[{1, i - 1}], {i, FactorInteger[n][[All, 2]]}], {n, 1, 200}] (* Geoffrey Critzer, Feb 12 2015 *)
    Table[1 + DivisorSum[n, 1 &, AllTrue[FactorInteger[#][[All, -1]], # > 2 &] &], {n, 120}] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A190867(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= max(1,f[k, 2]-1); ); m; } \\ Antti Karttunen, Jul 19 2017
    
  • Python
    from functools import reduce
    from sympy import factorint
    from operator import mul
    def a(n): return 1 if n==1 else reduce(mul, [max(1, e - 1) for e in factorint(n).values()])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 19 2017

Formula

a(n) = Sum_{d|n, d in A036966} 1.
a(n) <= A005361(n).
Multiplicative with a(p^e) = max(1,e-1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/(p^2*(p-1))) (A065483). (Ivić, 1978). - Amiram Eldar, Jul 23 2022
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(3*s)). - Amiram Eldar, Sep 21 2023