cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A268373 Numbers other than prime powers divisible by the sum of the cubes of their prime divisors.

Original entry on oeis.org

378, 480, 756, 960, 1134, 1440, 1512, 1920, 2268, 2400, 2548, 2646, 2880, 3024, 3402, 3840, 4320, 4536, 4800, 5096, 5292, 5760, 6048, 6804, 7200, 7680, 7938, 8640, 9072, 9600, 10192, 10206, 10584, 11520, 12000, 12096, 12960, 13608, 14400, 15360, 15876, 17280, 17836, 18144, 18522, 18711
Offset: 1

Views

Author

Michel Marcus, Feb 03 2016

Keywords

Comments

Koninck & Luca prove that this set is infinite. - Charles R Greathouse IV, Feb 03 2016

Examples

			The prime factors of 480 are 2, 3 and 5. The sum of their cubes is 2^3+3^3+5^3=160, and 480 is divisible by 160.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], Length[(p = FactorInteger[#][[;;,1]])] > 1 && Divisible[#, Total[p^3]] &] (* Amiram Eldar, Sep 05 2019 *)
  • PARI
    isok(n) = my(f = factor(n)[,1]) ; (#f>2) && ((n % sum(k=1, #f, f[k]^3)) == 0);

A268417 Numbers other than prime powers divisible by the sum and the sum of squares of their prime divisors.

Original entry on oeis.org

99528, 117040, 143520, 199056, 234080, 287040, 288288, 294216, 298584, 349440, 357357, 383040, 398112, 430560, 468160, 574080, 576576, 585200, 588432, 597168, 631488, 698880, 717600, 766080, 796224, 819280, 861120, 864864, 870870, 882648, 895752, 901824, 936320, 957000
Offset: 1

Views

Author

Michel Marcus, Feb 04 2016

Keywords

Comments

Intersection of A066031 and A190882.
Prime divisors taken without multiplicity. - Harvey P. Dale, Dec 27 2018

Crossrefs

Programs

  • Mathematica
    dssQ[n_]:=Module[{pf=FactorInteger[n][[All,1]]},!PrimePowerQ[ n] && Divisible[ n, Total[pf]]&&Divisible[n,Total[pf^2]]]; Select[ Range[ 960000],dssQ] (* Harvey P. Dale, Dec 27 2018 *)
  • PARI
    isok(n) = my(f = factor(n)[,1]); (#f>2) && ((n % vecsum(f)) == 0) && ((n % sum(k=1, #f, f[k]^2)) == 0);

A268418 Numbers other than prime powers divisible by the sum, the sum of squares and the sum of cubes of their prime divisors.

Original entry on oeis.org

12192180, 15724800, 24384360, 31449600, 36576540, 47174400, 48768720, 60960900, 62899200, 73153080, 78624000, 85345260, 94348800, 97537440, 109729620, 110073600, 121921800, 125798400, 134113980, 141523200, 146306160, 157248000, 158498340, 170690520, 182882700, 188697600, 195074880
Offset: 1

Views

Author

Michel Marcus, Feb 04 2016

Keywords

Crossrefs

Intersection of A268373 and A066031 and A190882.
Intersection of A268373 and A268417.

Programs

  • PARI
    isok(n) = my(f = factor(n)[,1]); (#f>2) && ((n % vecsum(f)) == 0) && ((n % sum(k=1, #f, f[k]^2)) == 0) && ((n % sum(k=1, #f, f[k]^3)) == 0);

A380902 Integers k with at least 1 proper factorization for which the sum of the squares of the factors equals k.

Original entry on oeis.org

16, 27, 48, 54, 270, 528, 1755, 7216, 7830, 11934, 69168, 81702, 100368, 264654, 340470, 559899, 1397808, 1586340, 1695195, 3837510, 3918420, 8989110, 9815568, 13010448, 15812550, 19468816, 26302590, 75872430, 132825616, 133529580, 180280539, 271165488
Offset: 1

Views

Author

Charles L. Hohn, Feb 07 2025

Keywords

Comments

It is conjectured that this sequence is infinite, that it does not contain any squarefree terms (A005117), and that with the exception of 16 (2^4) and 27 (3^3) it does not contain any squareful terms (A001694) or examples where the factors are all primes.
It is unknown whether this sequence contains any terms that produce more than one example (improbable if the exponential growth trend holds, but this is also unknown), or whether a more efficient generator algorithm (than the brute-force one given) exists or could be feasible.

Examples

			a(1) = 16: 2 * 2 * 2 * 2 = 2^2 + 2^2 + 2^2 + 2^2 = 16.
a(2) = 27: 3 * 3 * 3 = 3^2 + 3^2 + 3^2 = 27.
a(3) = 48: 2 * 2 * 2 * 6 = 2^2 + 2^2 + 2^2 + 6^2 = 48.
		

Crossrefs

Programs

  • PARI
    a380902_count(x, f=List())={my(r=x/if(#f, vecprod(Vec(f)), 1)); if(r==1, return(if(sum(i=1, #f, f[i]^2)==x, 1, 0))); my(d, c=0); fordiv(r, d, if(d==1 || d==x || (#f && dCharles L. Hohn, Mar 09 2025
Showing 1-4 of 4 results.