cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190940 Number of divisors of LCM(1,2,...,n)/n.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 12, 8, 16, 18, 48, 32, 96, 72, 64, 48, 240, 128, 480, 288, 320, 384, 960, 512, 960, 1152, 960, 1152, 3840, 3072, 7680, 3072, 6912, 7680, 6144, 6144, 18432, 15360, 13824, 12288, 36864, 23040, 73728, 49152, 49152, 61440, 147456, 73728, 147456, 122880
Offset: 1

Views

Author

Naohiro Nomoto, May 24 2011

Keywords

Comments

Also, number of sequences of d1 = 1 < d2 < ... < dk = n for some k >= 1 that are the first k divisors of some integer (cf. A378314). - Max Alekseyev, Nov 22 2024
Also, the number of distinct values taken by lcm(a,a+b,a+b+c,...,n), where positive integers a,b,c,... run over the compositions a+b+c+...=n. - Conjectured by Ridouane Oudra, Aug 24 2019; proved by Max Alekseyev, Nov 22 2024
Proof. It is clear that n | lcm(a,a+b,...,n) | lcm(1,2,...,n). Hence, lcm(a,a+b,...,n) = d*n for some d | lcm(1,2,...,n)/n. We'll show that each such d is achievable. Suppose d*n has prime factorization p1^e1 * ... * pk^ek with p1^e1 < ... < pk^ek. It is clear that pk^ek <= n, and we can take a composition (a,b,c,...) = (p1^e1, p2^e2 - p1^e1, p3^e3 - p2^e2, ..., pk^ek - p(k-1)^e(k-1), n - pk^ek), which delivers lcm(a,a+b,a+b+c,...,n) = p1^e1 * ... * pk^ek = d*n. QED - Max Alekseyev, Nov 22 2024

Examples

			Examples: for n=3 the a(3) = 2 distinct values are 3, 6. The compositions are 3, 1+2, 2+1, and 1+1+1. The values of the lcm are lcm(3)=3, lcm(1,1+2)=3, lcm(2,2+1)=6, and lcm(1,1+1,1+1+1)=6.
		

Crossrefs

First difference of A378314.

Programs

  • Maple
    Lpsum := proc(L) local ps,k ; ps := [op(1,L)] ; for i from 2 to nops(L) do ps := [op(ps), op(-1,ps)+op(i,L)] ; end do: ps ; end proc:
    A190940 := proc(n) local lc,k,c ; lc := {} ; for k from 1 to n do for c in combinat[composition](n,k) do lc := lc union { ilcm( op(Lpsum(c))) }; end do: end do: nops(lc) ; end proc: # R. J. Mathar, Jun 02 2011
  • Mathematica
    a[n_] := LCM @@@ (Accumulate /@ (Permutations /@ Rest[IntegerPartitions[n]] // Flatten[#, 1]&)) // Union // Length; Table[Print[an = a[n]]; an, {n, 1, 24}] (* Jean-François Alcover, Feb 27 2014 *)

Formula

a(n) = A000005(A002944(n)).

Extensions

a(12)-a(20) from R. J. Mathar, Jun 02 2011
a(21)-a(24) from Alois P. Heinz, Nov 03 2011
Edited and terms a(25) onward added by Max Alekseyev, Nov 22 2024