A190970 a(n) = 5*a(n-1) - 9*a(n-2), with a(0)=0, a(1)=1.
0, 1, 5, 16, 35, 31, -160, -1079, -3955, -10064, -14725, 16951, 217280, 933841, 2713685, 5163856, 1396115, -39494129, -210035680, -694731239, -1583335075, -1664094224, 5929544555, 44624570791, 169756952960, 447163627681, 708005561765, -484444840304
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-9).
Crossrefs
Cf. A190958 (index to generalized Fibonacci sequences).
Programs
-
Magma
[n le 2 select n-1 else 5*Self(n-1) - 9*Self(n-2): n in [1..51]]; // G. C. Greubel, Jun 09 2022
-
Maple
A190970 := proc(n) option remember ; if n <= 1 then n; else 5*procname(n-1)-9*procname(n-2) ; end if; end proc: # R. J. Mathar, Mar 23 2023
-
Mathematica
LinearRecurrence[{5,-9}, {0,1}, 50]
-
Sage
[3^(n-1)*chebyshev_U(n-1, 5/6) for n in (0..50)] # G. C. Greubel, Jun 09 2022
Formula
G.f.: x/(1 - 5*x + 9*x^2). - Philippe Deléham, Oct 12 2011
a(n) = 3^(n-1) * ChebyshevU(n-1, 5/6). - G. C. Greubel, Jun 09 2022