cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A038919 Primes p such that 41 is a square mod p.

Original entry on oeis.org

2, 5, 23, 31, 37, 41, 43, 59, 61, 73, 83, 103, 107, 113, 127, 131, 139, 163, 173, 197, 223, 241, 251, 269, 271, 277, 283, 307, 337, 349, 353, 359, 367, 373, 379, 389, 401, 409, 419, 431, 433, 443, 449, 461, 467
Offset: 1

Views

Author

Keywords

Comments

The only difference between this sequence and A191030 is the presence of a(6) = 41. - Zak Seidov, May 24 2013

Crossrefs

Cf. A191030. - Zak Seidov, May 24 2013

Programs

  • Mathematica
    Select[Prime[Range[100]], JacobiSymbol[41, #] != -1 &] (* Vincenzo Librandi, Sep 07 2012 *)

A035223 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 41.

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, 0, 0, 0, 0, 5, 0, 2, 0, 6, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 3, 2, 0, 0, 8, 1, 0, 2, 0, 2, 4, 0, 0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 4, 0, 7, 0, 0, 0, 0, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 10, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[41, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
  • PARI
    my(m = 41); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(41, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(41, d).
Multiplicative with a(41^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(41, p) = -1 (p is in A038920), and a(p^e) = e+1 if Kronecker(41, p) = 1 (p is in A191030).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(5*sqrt(41)+32)/sqrt(41) = 1.299093061575... . (End)
Showing 1-2 of 2 results.