cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191218 Odd numbers n such that sigma(n) is congruent to 2 modulo 4.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 45, 53, 61, 73, 89, 97, 101, 109, 113, 117, 137, 149, 153, 157, 173, 181, 193, 197, 229, 233, 241, 245, 257, 261, 269, 277, 281, 293, 313, 317, 325, 333, 337, 349, 353, 369, 373, 389, 397, 401, 405, 409, 421, 425, 433, 449, 457, 461, 477
Offset: 1

Views

Author

Luis H. Gallardo, May 26 2011

Keywords

Comments

Exactly the numbers of the form p^{4k+1}*m^2 with p a prime congruent to 1 modulo 4 and m a positive integer coprime with p. The odd perfect numbers are all of this form.
See A228058 for the terms where m > 1. - Antti Karttunen, Apr 22 2019

Examples

			For n=3 one has a(3)=17 since sigma(17) = 18 = 4*4 +2 is congruent to 2 modulo 4
		

Crossrefs

Subsequence of A191217.
Cf. A228058, A324898 (subsequences).

Programs

  • Maple
    with(numtheory): genodd := proc(b) local n,s,d; for n from 1 to b by 2 do s := sigma(n);
    if modp(s,4)=2 then print(n); fi; od; end;
  • Mathematica
    Select[Range[1,501,2],Mod[DivisorSigma[1,#],4]==2&] (* Harvey P. Dale, Nov 12 2017 *)
  • PARI
    forstep(n=1,10^3,2,if(2==(sigma(n)%4),print1(n,", "))) \\ Joerg Arndt, May 27 2011
    
  • PARI
    list(lim)=my(v=List()); forstep(e=1,logint(lim\=1,5),4, forprimestep(p=5,sqrtnint(lim,e),4, my(pe=p^e); forstep(m=1,sqrtint(lim\pe),2, if(m%p, listput(v,pe*m^2))))); Set(v) \\ Charles R Greathouse IV, Feb 16 2022