cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A193474 Table read by rows: The coefficients of the polynomials P(n, x) = Sum{k=0..n} Sum{j=0..k} (-1)^j * 2^(-k) * binomial(k, j) * (k-2*j)^n * x^(n-k).

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 6, 0, 1, 0, 24, 0, 8, 0, 0, 120, 0, 60, 0, 1, 0, 720, 0, 480, 0, 32, 0, 0, 5040, 0, 4200, 0, 546, 0, 1, 0, 40320, 0, 40320, 0, 8064, 0, 128, 0, 0, 362880, 0, 423360, 0, 115920, 0, 4920, 0, 1, 0, 3628800, 0, 4838400, 0, 1693440, 0, 130560, 0, 512, 0, 0
Offset: 1

Views

Author

Peter Luschny, Aug 01 2011

Keywords

Comments

See A196776 for a row reversed form of this triangle. - Peter Bala, Oct 06 2011

Examples

			The sequence of polynomials P(n, x) begins:
[0]    1;
[1]    1;
[2]    2;
[3]    6 +      x^2;
[4]   24 +    8*x^2;
[5]  120 +   60*x^2 +     x^4;
[6]  720 +  480*x^2 +  32*x^4;
[7] 5040 + 4200*x^2 + 546*x^4 + x^6.
		

Crossrefs

Programs

  • Maple
    A193474_polynom := proc(n,x) local k, j;
    add(add((-1)^j*2^(-k)*binomial(k,j)*(k-2*j)^n*x^(n-k),j=0..k),k=0..n) end: seq(seq(coeff(A193474_polynom(n,x),x,i),i=0..n),n=0..10);
  • Mathematica
    p[n_, x_] := Sum[(-1)^j*2^(-k)*Binomial[k, j]*(k-2*j)^n*x^(n-k), {k, 0, n}, {j, 0, k}]; t[n_, k_] := Coefficient[p[n, x], x, k]; t[0, 0] = 1; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2014 *)

Formula

P(n, 0) = A000142(n).
P(n, 1) = A006154(n).
P(n, 2) = A191277(n).
P(n, i) = A000111(n+1), where i is the imaginary unit.
P(n, i)*2^n = A000828(n+1).
P(n, 1/2)*2^n = A000557(n).
P(n, 1/3)*3^n = A107403(n).
P(n, i/2)*2^n = A007289(n).
G(m, x) = 1/(1 - m*sinh(x)) is the generating function of m^n*P(n, 1/m).
GI(m, x) = 1/(1 - m*sin(x)) is the generating function of m^n*P(n, i/m).
[x^2] P(n+1, x) = A005990(n).

A381284 Expansion of e.g.f. 1/(1 - sinh(3*x) / 3).

Original entry on oeis.org

1, 1, 2, 15, 96, 741, 7632, 87795, 1149696, 17155881, 282880512, 5128464375, 101592631296, 2178698451021, 50314379323392, 1245198047833755, 32868161979088896, 921803465256094161, 27373850876851126272, 858044392807801699935, 28311289100161039466496
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a(n) = sum(k=0, n, k!*3^(n-k)*a136630(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 9^k * binomial(n,2*k+1) * a(n-2*k-1).
a(n) = Sum_{k=0..n} k! * 3^(n-k) * A136630(n,k).
a(n) ~ sqrt(Pi/5) * 3^(n+1) * n^(n + 1/2) / (arcsinh(3)^(n+1) * exp(n)). - Vaclav Kotesovec, Apr 19 2025

A381346 Expansion of e.g.f. 1/( 1 - sinh(sqrt(2)*x) / sqrt(2) ).

Original entry on oeis.org

1, 1, 2, 8, 40, 244, 1808, 15632, 154240, 1712656, 21132032, 286800128, 4246266880, 68108302144, 1176458774528, 21772909267712, 429818456473600, 9015349812633856, 200218257664704512, 4693597812326094848, 115820240623410872320, 3000905720793597113344
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a(n) = sum(k=0, n, k!*2^((n-k)/2)*a136630(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 2^k * binomial(n,2*k+1) * a(n-2*k-1).
a(n) = Sum_{k=0..n} k! * 2^((n-k)/2) * A136630(n,k).
a(n) ~ sqrt(Pi/3) * 2^(n/2 + 1) * n^(n + 1/2) / (arcsinh(sqrt(2))^(n+1) * exp(n)). - Vaclav Kotesovec, Apr 19 2025

A381347 Expansion of e.g.f. 1/( 1 - sin(sqrt(2)*x) / sqrt(2) ).

Original entry on oeis.org

1, 1, 2, 4, 8, 4, -112, -1184, -9088, -59504, -310528, -643136, 14701568, 323581504, 4554426368, 51666451456, 458243735552, 2004840714496, -37024075153408, -1386061762251776, -29290212127670272, -483475390212586496, -6224109737622372352, -45231727252157947904
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a(n) = sum(k=0, n, k!*(-2)^((n-k)/2)*a136630(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-2)^k * binomial(n,2*k+1) * a(n-2*k-1).
a(n) = Sum_{k=0..n} k! * (-2)^((n-k)/2) * A136630(n,k)
Showing 1-4 of 4 results.