cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A291153 a(n) is the prime index of A191304(n+1).

Original entry on oeis.org

3, 5, 9, 15, 26, 51, 91, 160, 290, 526, 959, 1767, 3279, 6113, 11426, 21456, 40448, 76548, 145205, 276032, 526142, 1004977, 1924032, 3689162, 7086486, 13633821, 26269617, 50680636, 97899691, 189336057, 366569494, 710444878, 1378224063, 2676107406, 5200648226, 10114912373, 19687771058, 38348128843, 74746149884, 145785668141, 284517554507, 555594884599, 1085551499862, 2122142209034, 4150687469435
Offset: 1

Views

Author

Ralf Steiner, Aug 19 2017

Keywords

Comments

The left point (x,y) of intersection of quadratic fits of log(a(n)) and log(A191304(n+1)) is about (-1, 0).
a(n+1) < 2 a(n) for all n, and lim_{n->inf} a(n+1)/a(n) = 2.
With A167168(1)=3 and s_1 = {3,5,11,23,...}, p_(a(n)) = s_1(n+1) in a two-index notation for every prime p_i for i > 1 based on Shevelev's equivalence classes of Rowland-like prime sequence recurrences. These equivalence classes {s_n(k)} were defined by Shevelev, see Crossrefs.

Examples

			p_(a(3)) = A000040(a(3)) = A000040(9) = 23 = s_1(3+1) with
s_1 = {3,5,11,23,...}.
		

Crossrefs

Cf. A191304, A167168 (equivalence classes), A000040 (prime numbers).

Programs

Formula

a(n) = pi(A191304(n+1)).
(4/5)^2 (n - 1) < log(a(n)) < (4/5)^2 (n + 1), for at least n < 46.

A132199 Rowland's prime-generating sequence: first differences of A106108.

Original entry on oeis.org

1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 101, 3, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2008

Keywords

Comments

Rowland shows that the terms are all 1's or primes.
The prime terms form A137613.
See A137613 for additional comments, links and references. - Jonathan Sondow, Aug 14 2008
From Robert G. Wilson v, Apr 30 2009: (Start)
First appearance of k-th prime, k >= 0: 1, 0, 5, 4, 104, 10, 116, 242878, 242819, 22, 243019, 3891770, 242867, ..., .
The number of different numbers in the first 10^k terms beginning with k=0: 1, 4, 7, 12, 15, 19, 30, >35, ..., .
Record high values are A191304. (End)

References

  • Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

Crossrefs

Cf. A106108, A137613, A134734, A134743, A134744, A191304 (record highs) A247090. See A106108 for other cross-references.

Programs

  • Haskell
    a132199 n = a132199_list !! (n-1)
    a132199_list = zipWith (-) (tail a106108_list) a106108_list
    -- Reinhard Zumkeller, Nov 15 2013
    
  • Maple
    A106108 := proc(n)
        option remember;
        if n = 1 then
            7;
        else
            procname(n-1)+igcd(n,procname(n-1)) ;
        end if;
    end proc:
    A132199 := proc(n)
        A106108(n+1)-A106108(n) ;
    end proc: # R. J. Mathar, Jul 04 2013
  • Mathematica
    a[1] = 7; a[n_] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; t = Array[a, 104]; Rest@t - Most@t (* Robert G. Wilson v, Apr 30 2009 *)
  • PARI
    ub=1000; a=7; n=2; while(nDaniel Constantin Mayer, Aug 31 2014
    
  • Python
    from itertools import count, islice
    from math import gcd
    def A132199_gen(): # generator of terms
        a = 7
        for n in count(2):
            yield (b:=gcd(a,n))
            a += b
    A132199_list = list(islice(A132199_gen(),20)) # Chai Wah Wu, Mar 14 2023
Showing 1-2 of 2 results.