A191329 (Lower Wythoff sequence mod 2)+(Upper Wythoff sequence mod 2).
1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2
Offset: 1
Keywords
Examples
u = (1,3,4,6,8,9,...)... = (1,1,0,0,0,1,...) in mod 2 v = (2,5,7,10,13,15,...) = (0,1,1,0,1,1,...) in mod 2, so that......... A191329 = (1,2,1,0,1,2,...).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
r = GoldenRatio; s = r/(r - 1); h = 500; u = Table[Floor[n*r], {n, 1, h}] (* A000201 *) v = Table[Floor[n*s], {n, 1, h}] (* A001950 *) w = Mod[u, 2] + Mod[v, 2] (* A191329 *) b = Flatten[Position[w, 0]] (* A191330=2*A005653 *) c = Flatten[Position[w, 1]] (* A005408, the odds *) d = Flatten[Position[w, 2]] (* A191331=2*A005652 *) e = b/2; (* A005653 *) f = d/2; (* A005652 *) x = (1/3)^b; z = (1/3)^d; k[n_] := x[[n]]; x1 = Sum[k[n], {n, 1, 100}]; N[x1, 100] RealDigits[x1, 10, 100] (* A191332 *) k[n_] := z[[n]]; z1 = Sum[k[n], {n, 1, 100}]; N[z1, 100] RealDigits[z1, 10, 100] (* A191333 *) N[x1 + z1, 100] (* Checks that x1+z1=1/8 *) x = (1/3)^e; z = (1/3)^f; k[n_] := x[[n]]; x2 = Sum[k[n], {n, 1, 100}]; N[x2, 100] RealDigits[x2, 10, 100] (* A191334 *) k[n_] := z[[n]]; z2 = Sum[k[n], {n, 1, 100}]; N[z2, 100] RealDigits[z2, 10, 100] (* A191335 *) N[x2 + z2, 100] (* checks that x2+z2=1/2 *)
-
PARI
A191329(n) = { my(y=n+sqrtint(n^2*5)); (((y+n+n)\2)%2) + ((y%4)>1); }; \\ (after programs in A001950 and A085002) - Antti Karttunen, May 19 2021
-
Python
from math import isqrt def A191329(n): return m if (m:=((n+isqrt(5*n**2))&2)+(n&1))<3 else 1 # Chai Wah Wu, Aug 10 2022
Comments