cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A191330 Positions of 0 in A191329.

Original entry on oeis.org

4, 8, 10, 14, 20, 24, 26, 30, 36, 40, 46, 50, 52, 56, 62, 66, 68, 72, 76, 78, 82, 88, 92, 94, 98, 104, 108, 114, 118, 120, 124, 130, 134, 136, 140, 144, 146, 150, 156, 160, 162, 166, 172, 176, 178, 182, 186, 188, 192, 198, 202, 204, 208, 214, 218, 224, 228, 230, 234, 240, 244, 246, 250, 254, 256, 260, 266, 270, 272, 276, 282, 286
Offset: 1

Views

Author

Clark Kimberling, May 31 2011

Keywords

Comments

Examples

			A191329=(1,2,1,0,1,2,1,0,1,0,1,2,1,0,1...),
so that a(1)=4, a(2)=8, a(3)=10,...
		

Crossrefs

Programs

A191331 Positions of 2 in A191329.

Original entry on oeis.org

2, 6, 12, 16, 18, 22, 28, 32, 34, 38, 42, 44, 48, 54, 58, 60, 64, 70, 74, 80, 84, 86, 90, 96, 100, 102, 106, 110, 112, 116, 122, 126, 128, 132, 138, 142, 148, 152, 154, 158, 164, 168, 170, 174, 180, 184, 190, 194, 196, 200, 206, 210, 212, 216, 220, 222, 226, 232, 236, 238, 242, 248, 252, 258, 262, 264, 268, 274, 278, 280, 284, 288
Offset: 1

Views

Author

Clark Kimberling, May 31 2011

Keywords

Comments

Examples

			A191329=(1,2,1,0,1,2,1,0,1,0,1,2,...), so that
a(1)=2, a(2)=6, a(3)=12,...
		

Crossrefs

Programs

A191336 (A022838 mod 2)+(A054406 mod 2).

Original entry on oeis.org

1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 2, 1, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 1, 1, 2, 1, 1, 0, 1, 1, 2, 2, 1, 0
Offset: 1

Views

Author

Clark Kimberling, Jun 01 2011

Keywords

Comments

A022838: Beatty sequence for r=sqrt(3),
A054406: Beatty sequence for s=(3+sqrt(3))/2 (complement
of A022838), so that
A191336(n)=([nr] mod 2)+([ns] mod 2), where [ ]=floor.
A191336(n)=(number of odd numbers in {[nr],[ns]}).

Crossrefs

Programs

  • Mathematica
    r = Sqrt[3]; s = r/(r - 1); h = 320;
    u = Table[Floor[n*r], {n, 1, h}] (* A022838 *)
    v = Table[Floor[n*s], {n, 1, h}] (* A054406 *)
    w = Mod[u, 2] + Mod[v, 2] (* A191336 *)
    Flatten[Position[w, 0]]   (* A191337 *)
    Flatten[Position[w, 1]]   (* A191338 *)
    Flatten[Position[w, 2]]   (* A191339 *)

Formula

a(n)=([nr] mod 2)+([ns] mod 2), where r=sqrt(3), s=r/(r-1), and [ ]=floor.

A191332 Decimal expansion of sum{(1/3)^A191330(k): k>=1}.

Original entry on oeis.org

0, 1, 2, 5, 1, 5, 2, 3, 9, 2, 5, 6, 3, 2, 4, 2, 9, 1, 3, 6, 5, 4, 4, 3, 1, 3, 1, 7, 0, 5, 5, 1, 9, 5, 0, 6, 5, 3, 6, 5, 6, 1, 3, 5, 2, 5, 1, 3, 4, 4, 5, 7, 0, 1, 1, 8, 6, 3, 4, 3, 6, 2, 5, 4, 4, 2, 8, 1, 4, 6, 3, 0, 6, 6, 5, 7, 6, 7, 5, 6, 6, 8, 4, 8, 8, 3, 1, 3, 7, 1, 2, 7, 4, 4, 6, 4, 3, 9, 3, 9, 7
Offset: 0

Views

Author

Clark Kimberling, May 31 2011

Keywords

Comments

sum{(1/3)^A191330(k)}+sum{(1/3)^A191331(k)}= 1/8.

Examples

			0.01251523925632429136544313170551950...
		

Crossrefs

Programs

A191340 (A022839 mod 2)+(A108598 mod 2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 2, 2, 2, 1, 0, 0, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1, 2, 2, 2, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1, 2, 2, 2, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Jun 01 2011

Keywords

Comments

Let r=sqrt(5) and s=r/(r-1). There numbers yield the following two complementary Beatty sequences:
A022839(n)=[nr], A108598(n)=[ns], where [ ]=floor.
A191340(n)=the number of odd numbers in {[nr], [ns]}.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[5]; s = r/(r - 1); h = 120;
    u = Table[Floor[n*r], {n, 1, h}] (* A022839 *)
    v = Table[Floor[n*s], {n, 1, h}] (* A108598 *)
    w = Mod[u, 2] + Mod[v, 2] (* A191340 *)
    Flatten[Position[w, 0]]  (* A191380 *)
    Flatten[Position[w, 1]]  (* A191381 *)
    Flatten[Position[w, 2]]  (* A191382 *)

Formula

a(n)=([nr] mod 2)+([ns] mod 2), where r=sqrt(5), s=r/(r-1), [ ]=floor.

A191333 Decimal representation of sum{(1/3)^A191331(k): k>=1}.

Original entry on oeis.org

1, 1, 2, 4, 8, 4, 7, 6, 0, 7, 4, 3, 6, 7, 5, 7, 0, 8, 6, 3, 4, 5, 5, 6, 8, 6, 8, 2, 9, 4, 4, 8, 0, 4, 9, 3, 4, 6, 3, 4, 3, 8, 6, 4, 7, 4, 8, 6, 5, 5, 4, 2, 9, 8, 8, 1, 3, 6, 5, 6, 3, 7, 4, 5, 5, 7, 1, 8, 5, 3, 6, 9, 3, 3, 4, 2, 3, 2, 4, 3, 3, 1, 5, 1, 1, 6, 8, 6, 2, 8, 7, 2, 5, 5, 3, 5, 6, 0, 6, 0
Offset: 0

Views

Author

Clark Kimberling, May 31 2011

Keywords

Comments

Examples

			0.11248476074367570863455686829448049346...
		

Crossrefs

Programs

A191335 Decimal expansion of sum{(1/3)^A005652(k): k>=1}.

Original entry on oeis.org

3, 7, 1, 9, 5, 1, 2, 1, 9, 6, 0, 6, 6, 2, 8, 3, 4, 5, 3, 0, 7, 0, 4, 1, 7, 3, 4, 9, 0, 1, 3, 1, 2, 3, 4, 4, 6, 2, 4, 2, 4, 8, 3, 9, 1, 1, 6, 3, 4, 3, 9, 3, 1, 9, 4, 8, 8, 1, 1, 5, 9, 5, 9, 0, 4, 3, 1, 3, 3, 6, 7, 7, 4, 9, 5, 6, 7, 9, 7, 7, 6, 1, 4, 6, 1, 1, 8, 3, 3, 0, 1, 7, 6, 5, 9, 5, 7, 4, 0, 7
Offset: 1

Views

Author

Clark Kimberling, May 31 2011

Keywords

Comments

See A191329 and A191334.

Examples

			0.3719512196066283453070417349013123446242...
		

Crossrefs

Programs

A191334 Decimal expansion of sum{(1/3)^A005653(k): k>=1}.

Original entry on oeis.org

1, 2, 8, 0, 4, 8, 7, 8, 0, 3, 9, 3, 3, 7, 1, 6, 5, 4, 6, 9, 2, 9, 5, 8, 2, 6, 5, 0, 9, 8, 6, 8, 7, 6, 5, 5, 3, 7, 5, 7, 5, 1, 6, 0, 8, 8, 3, 6, 5, 6, 0, 6, 8, 0, 5, 1, 1, 8, 8, 4, 0, 4, 0, 9, 5, 6, 8, 6, 6, 3, 2, 2, 5, 0, 4, 3, 2, 0, 2, 2, 3, 8, 5, 3, 8, 8, 1, 6, 6, 9, 8, 2, 3, 3, 9, 9, 8, 6, 6, 8
Offset: 1

Views

Author

Clark Kimberling, May 31 2011

Keywords

Comments

sum{(1/3)^A005653(k)}+sum{(1/3)^A005652(k)}=1/2.

Examples

			0.128048780393371654692958265098687655...
		

Crossrefs

Programs

A191339 Positions of 2 in A191336.

Original entry on oeis.org

3, 9, 10, 15, 16, 25, 26, 31, 32, 38, 41, 47, 48, 53, 54, 60, 63, 69, 70, 75, 76, 85, 91, 92, 98, 107, 108, 113, 114, 120, 123, 129, 130, 135, 136, 142, 145, 151, 152, 157, 158, 167, 173, 174, 180, 189, 190, 195, 196, 202, 205, 211, 212, 217, 218, 224, 227, 233, 234, 239, 240, 249, 250, 255, 256, 262, 271, 272, 277, 278, 284, 287
Offset: 1

Views

Author

Clark Kimberling, Jun 01 2011

Keywords

Comments

See A191336.

Crossrefs

Programs

A191337 Positions of 0 in A191336.

Original entry on oeis.org

6, 7, 12, 13, 19, 22, 28, 29, 34, 35, 44, 50, 51, 56, 57, 66, 67, 72, 73, 79, 82, 88, 89, 94, 95, 101, 104, 110, 111, 116, 117, 126, 132, 133, 139, 148, 149, 154, 155, 161, 164, 170, 171, 176, 177, 183, 186, 192, 193, 198, 199, 208, 214, 215, 221, 230, 231, 236, 237, 243, 246, 252, 253, 258, 259, 265, 268, 274, 275, 280, 281, 290
Offset: 1

Views

Author

Clark Kimberling, Jun 01 2011

Keywords

Comments

See A191336.

Crossrefs

Programs

Showing 1-10 of 11 results. Next