cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A191396 Sum of the heights of the base pyramids in all dispersed Dyck paths of length n (i.e., in all Motzkin paths of length n with no (1,0)-steps at positive heights). A base pyramid is a factor of the form U^j D^j (j>0), starting at the horizontal axis. Here U=(1,1) and D=(1,-1).

Original entry on oeis.org

0, 0, 1, 2, 7, 14, 35, 70, 156, 312, 663, 1326, 2756, 5512, 11325, 22650, 46227, 92454, 187891, 375782, 761465, 1522930, 3079475, 6158950, 12434015, 24868030, 50142687, 100285374, 202010787, 404021574, 813191039, 1626382078, 3271314744, 6542629488
Offset: 0

Views

Author

Emeric Deutsch, Jun 04 2011

Keywords

Examples

			a(4)=7 because in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD the sum of the heights of the base pyramids are 0, 1, 1, 1, 2, and 2, respectively.
		

Programs

  • Maple
    g := 4*z^2/(1-2*z-z^2+2*z^3+(1-z^2)*sqrt(1-4*z^2))^2: gser := series(g, z = 0, 37): seq(coeff(gser, z, n), n = 0 .. 33);
  • Mathematica
    CoefficientList[Series[4*x^2/(1-2*x-x^2+2*x^3+(1-x^2)*Sqrt[1-4*x^2])^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(4*x^2/(1-2*x-x^2+2*x^3+(1-x^2)*sqrt(1-4*x^2))^2)) \\ G. C. Greubel, May 27 2017

Formula

a(n) = Sum_{k>=0} k*A191395(n,k).
G.f.: g(z) = 4*z^2/(1-2*z-z^2+2*z^3+(1-z^2)*sqrt(1-4*z^2))^2.
a(n) ~ 2^(n+3)/9 * (1-sqrt(2)/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 21 2014
D-finite with recurrence n*a(n) -2*n*a(n-1) +6*(-n+2)*a(n-2) +12*(n-2)*a(n-3) +3*(3*n-8)*a(n-4) +6*(-3*n+8)*a(n-5) +4*(-n+3)*a(n-6) +8*(n-3)*a(n-7)=0. - R. J. Mathar, Oct 08 2016
Showing 1-1 of 1 results.