cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A191398 Number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0)-steps at positive heights) having no DHU's (here U=(1,1), H=(1,0), and D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 28, 56, 89, 179, 289, 585, 956, 1948, 3214, 6591, 10959, 22609, 37833, 78486, 132037, 275316, 465255, 974659, 1653418, 3478520, 5920569, 12504448, 21344348, 45240473, 77417309, 164624203, 282335973, 602163830, 1034757445, 2212959172, 3809387953, 8167344875
Offset: 0

Views

Author

Emeric Deutsch, Jun 04 2011

Keywords

Examples

			a(5)=9 because among the 10 (=A001405(5)) dispersed Dyck paths of length 5 only UDHUD has a DHU.
		

Programs

  • Maple
    g := 2/(1-z-2*z^3+(1-z)*sqrt(1-4*z^2)); gser := series(g, z = 0, 41); seq(coeff(gser, z, n), n = 0 .. 38);
  • Mathematica
    CoefficientList[Series[2/(1-x-2*x^3+(1-x)*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    x='x+O('x^50); Vec(2/(1-x-2*x^3+(1-x)*sqrt(1-4*x^2))) \\ G. C. Greubel, Mar 26 2017

Formula

a(n) = A191397(n,0).
G.f.: 2/(1-z-2*z^3+(1-z)*sqrt(1-4*z^2)).
a(n) ~ 2^(n+7/2) * (1+3*(-1)^n/49) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
Conjecture: -(n+2)*(n-3)*a(n) +(3*n^2-3*n-14)*a(n-1) +2*(n^2-7*n+8)*a(n-2) +4*(-3*n^2+12*n-10)*a(n-3) +(7*n^2-31*n+38)*a(n-4) +4*a(n-5) +4*(n-2)^2*a(n-6)=0. - R. J. Mathar, Jun 14 2016

A191395 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of length n (i.e., of Motzkin paths of length n with no (1,0)-steps at positive heights) for which the sum of the heights of its base pyramid is k. A base pyramid is a factor of the form U^j D^j (j>0), starting at the horizontal axis. Here U=(1,1) and D=(1,-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 2, 5, 9, 4, 3, 6, 14, 12, 8, 9, 20, 25, 8, 13, 14, 27, 44, 28, 31, 29, 40, 70, 66, 16, 49, 54, 62, 104, 129, 64, 109, 115, 116, 159, 225, 168, 32, 170, 212, 217, 250, 363, 360, 144, 371, 430, 445, 444, 581, 681, 416, 64, 581, 772, 854, 820, 938, 1182, 968, 320
Offset: 0

Views

Author

Emeric Deutsch, Jun 04 2011

Keywords

Comments

Row n has 1+ceiling(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,0) = A191393(n).
Sum_{k>=0} k*T(n,k) = A191397(n).

Examples

			T(4,2)=2 because we have UDUD and UUDD, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
  1;
  1;
  1,  1;
  1,  2;
  1,  3,  2;
  1,  4,  5;
  2,  5,  9,  4;
  3,  6, 14, 12;
  8,  9, 20, 25,  8;
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*G*(c+t/(1-t*z^2)-1/(1-z^2)): c := ((1-sqrt(1-4*z^2))*1/2)/z^2: g := simplify(solve(eq, G)): gser := simplify(series(g, z = 0, 19)): for n from 0 to 15 do P[n] := sort(expand(coeff(gser, z, n))) end do: for n from 0 to 15 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G=G(t,z) satisfies G = 1+z*G+z^2*G*(c+t/(1-t*z^2)-1/(1-z^2)), where c = (1-sqrt(1-4*z^2))/(2*z^2) (the Catalan function with argument z^2).
Showing 1-2 of 2 results.