A191439 Dispersion of ([n*sqrt(2)+n+1/2]), where [ ]=floor, by antidiagonals.
1, 2, 3, 5, 7, 4, 12, 17, 10, 6, 29, 41, 24, 14, 8, 70, 99, 58, 34, 19, 9, 169, 239, 140, 82, 46, 22, 11, 408, 577, 338, 198, 111, 53, 27, 13, 985, 1393, 816, 478, 268, 128, 65, 31, 15, 2378, 3363, 1970, 1154, 647, 309, 157, 75, 36, 16, 5741, 8119, 4756
Offset: 1
Examples
Northwest corner: 1....2....5....12...29 3....7....17...41...99 4....10...24...58...140 6....14...34...82...198 8....19...46...111..268
Links
- Robbert Fokkink, The Pell Tower and Ostronometry, arXiv:2309.01644 [math.CO], 2023.
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; x = Sqr[2]; f[n_] := Floor[n*x+n+1/2] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191439 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191439 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments