A191475 Values of i in the numbers 2^i*3^j, i >= 1, j >= 1 (A033845).
1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 1, 9, 6, 3, 8, 5, 2, 10, 7, 4, 1, 9, 6, 3, 11, 8, 5, 2, 10, 7, 4, 12, 1, 9, 6, 3, 11, 8, 5, 13, 2, 10, 7, 4, 12, 1, 9, 6, 14, 3, 11, 8, 5, 13, 2, 10, 7, 15, 4, 12, 1, 9, 6, 14, 3, 11
Offset: 1
Keywords
Examples
a(10) = 2 because A033845(10) = 108 = 2^2*3^3. a(100) = 2 because A033845(100) = 59872 = 2^8*3^7. a(1000) = 56 because A033845(1000) = 216172782113783808 = 2^56*3^1.
Links
Crossrefs
Programs
-
Mathematica
mx = 1000000; t = Select[Sort[Flatten[Table[2^i 3^j, {i, Log[2, mx]}, {j, Log[3, mx]}]]], # <= mx &]; Table[FactorInteger[i][[1, 2]], {i, t}] (* T. D. Noe, Aug 31 2012 *)
-
Python
from sympy import integer_log def A191475(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) return 1+(~(m:=bisection(f,n,n))&m-1).bit_length() # Chai Wah Wu, Sep 15 2024
Extensions
Edited by N. J. A. Sloane, May 26 2024
Comments