A191483 Even discriminants of imaginary quadratic fields, negated.
4, 8, 20, 24, 40, 52, 56, 68, 84, 88, 104, 116, 120, 132, 136, 148, 152, 164, 168, 184, 212, 228, 232, 244, 248, 260, 264, 276, 280, 292, 296, 308, 312, 328, 340, 344, 356, 372, 376, 388, 404, 408, 420, 424, 436, 440, 452, 456, 472, 488, 516, 520, 532, 536, 548
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || ! Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *); -Select[-Range@550, FundamentalDiscriminantQ@# && EvenQ@# &] (* Second program: *) Select[Range[600], Mod[#, 4] == 0 && SquareFreeQ[#/4] && Mod[#, 16] != 12&] (* Jean-François Alcover, Jul 25 2019, after Andrew Howroyd *)
-
PARI
ok(n)={isfundamental(-n) && n%2==0} \\ Andrew Howroyd, Jul 25 2018
-
PARI
ok(n)={n%4==0 && issquarefree(n/4) && n%16<>12} \\ Andrew Howroyd, Jul 25 2018
Formula
a(n) = 4*A089269(n). - Andrew Howroyd, Jul 25 2018
Comments