cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003642 Number of genera of imaginary quadratic field with discriminant -k, k = A191483(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 2, 4, 8, 2, 2, 4, 2, 4, 2, 2, 4, 4, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 4, 8, 2, 4, 2, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 2, 4, 2, 4, 2, 4, 8, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 4, 4, 4, 2, 2, 4
Offset: 1

Views

Author

Keywords

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001221 (omega), A003640, A003641, A191483.

Programs

  • Mathematica
    2^(PrimeNu[Select[Range[1000], Mod[#, 4] == 0 && SquareFreeQ[#/4] && Mod[#, 16] != 12&]] - 1) (* Jean-François Alcover, Jul 25 2019, after Andrew Howroyd in A191483 *)
  • PARI
    for(n=1, 1000, if(isfundamental(-n) && n%2==0, print1(2^(omega(n) - 1), ", "))) \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = 2^(omega(A191483(n)) - 1). - Jianing Song, Jul 24 2018

Extensions

Name clarified by Jianing Song, Jul 24 2018

A319661 2-rank of the class group of imaginary quadratic field with discriminant -k, k = A191483(n).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2
Offset: 1

Views

Author

Jianing Song, Sep 25 2018

Keywords

Comments

The p-rank of a finite abelian group G is equal to log_p(#{x belongs to G : x^p = 1}) where p is a prime number. In this case, G is the class group of Q(sqrt(-k)), and #{x belongs to G : x^p = 1} is the number of genera of Q(sqrt(-k)) (cf. A003642).

Crossrefs

Programs

  • Mathematica
    PrimeNu[Select[Range[1000], Mod[#, 4] == 0 && SquareFreeQ[#/4] && Mod[#, 16] != 12&]] - 1 (* Jean-François Alcover, Aug 02 2019, after Andrew Howroyd in A191483 *)
  • PARI
    for(n=1, 1000, if(isfundamental(-n) && n%2==0, print1(omega(n) - 1, ", ")))
    
  • Sage
    def A319661_list(len):
        L = []
        for n in range(2, len+1, 2):
            if is_fundamental_discriminant(-n):
                L.append(sloane.A001221(n) - 1)
        return L
    print(A319661_list(854)) # Peter Luschny, Oct 15 2018

Formula

a(n) = log_2(A003642(n)) = omega(A191483(n)) - 1, where omega(k) is the number of distinct prime divisors of k.

A003657 Discriminants of imaginary quadratic fields, negated.

Original entry on oeis.org

3, 4, 7, 8, 11, 15, 19, 20, 23, 24, 31, 35, 39, 40, 43, 47, 51, 52, 55, 56, 59, 67, 68, 71, 79, 83, 84, 87, 88, 91, 95, 103, 104, 107, 111, 115, 116, 119, 120, 123, 127, 131, 132, 136, 139, 143, 148, 151, 152, 155, 159, 163, 164, 167, 168, 179, 183, 184, 187, 191
Offset: 1

Views

Author

Keywords

Comments

Negative of fundamental discriminants D := b^2-4*a*c<0 of definite integer binary quadratic forms F=a*x^2+b*x*y+c*y^2. See Buell reference pp. 223-234. See 4*A089269 = A191483 for even a(n) and A039957 for odd a(n). - Wolfdieter Lang, Nov 07 2003
All prime numbers in the set of the absolute values of negative fundamental discriminants are Gaussian primes (A002145). - Paul Muljadi, Mar 29 2008
Complement: 1, 2, 5, 6, 9, 10, 12, 13, 14, 16, 17, 18, 21, 22, 25, 26, 27, 28, 29, 30, 32, 33, 34, 36, ..., . - Robert G. Wilson v, Jun 04 2011
The asymptotic density of this sequence is 3/Pi^2 (A104141). - Amiram Eldar, Feb 23 2021

References

  • Duncan A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989.
  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, p. 514.
  • Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002145, A003658, A039957 (odd terms), A191483 (even terms), A104141.

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *); -Select[-Range@ 194, FundamentalDiscriminantQ] (* Robert G. Wilson v, Jun 01 2011 *)
  • PARI
    ok(n)={isfundamental(-n)} \\ Andrew Howroyd, Jul 20 2018
    
  • PARI
    ok(n)={n<>1 && issquarefree(n/2^valuation(n,2)) && (n%4==3 || n%16==8 || n%16==4)} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..200) if is_fundamental_discriminant(-n)==1] # G. C. Greubel, Mar 01 2019

A039957 Squarefree numbers congruent to 3 mod 4.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 31, 35, 39, 43, 47, 51, 55, 59, 67, 71, 79, 83, 87, 91, 95, 103, 107, 111, 115, 119, 123, 127, 131, 139, 143, 151, 155, 159, 163, 167, 179, 183, 187, 191, 195, 199, 203, 211, 215, 219, 223, 227, 231, 235, 239, 247, 251, 255
Offset: 1

Views

Author

Keywords

Comments

Negatives of odd fundamental discriminants D := b^2-4*a*c<0 of definite integer binary quadratic forms F=a*x^2+b*x*y+c*y^2. See Buell reference pp. 224-230. See 4*A089269 = A191483 for the even case and A003657 for combined even and odd numbers. - Wolfdieter Lang, Nov 07 2003
The asymptotic density of this sequence is 2/Pi^2 = 0.202642... (A185197). - Amiram Eldar, Feb 10 2021

References

  • Richard A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.
  • Duncan A. Buell, Binary Quadratic Forms, Springer-Verlag, NY, 1989.

Crossrefs

Programs

  • Haskell
    a039957 n = a039957_list !! (n-1)
    a039957_list = filter ((== 3) . (`mod` 4)) a005117_list
    -- Reinhard Zumkeller, Aug 15 2011
    
  • Magma
    [4*n+3: n in [0..63] | IsSquarefree(4*n+3)];  // Bruno Berselli, Mar 04 2011
    
  • Mathematica
    fQ[n_] := SquareFreeQ[n] && Mod[n, 4] == 3; Select[ Range@ 258, fQ] (* Robert G. Wilson v, Mar 02 2011 *)
    Select[Range[3,300,4],SquareFreeQ] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    is(n)=n%4==3 && issquarefree(n) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Offset corrected
Showing 1-4 of 4 results.