A003641 Number of genera of imaginary quadratic field with discriminant -k, k = A039957(n).
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 4, 1, 2, 1, 2, 2, 1, 1, 4, 2, 1, 2, 1, 4, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 4, 2, 2, 2, 2, 1, 2, 1, 4, 1, 1, 2, 2, 4, 1, 1, 2, 1, 4, 1, 1, 1, 1, 2
Offset: 1
Keywords
Examples
a(4) = 2 because -15 = -A039957(4) and the number of genera of the quadratic field with discriminant -15 is 2. - _Andrew Howroyd_, Jul 25 2018
References
- D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Programs
-
Mathematica
2^(PrimeNu[Select[Range[1000], Mod[#, 4] == 3 && SquareFreeQ[#]&]] - 1) (* Jean-François Alcover, Jul 25 2019, after Andrew Howroyd *)
-
PARI
for(n=1, 1000, if(n%4==3 && issquarefree(n), print1(2^(omega(n) - 1), ", "))) \\ Andrew Howroyd, Jul 24 2018
Formula
a(n) = 2^(omega(A039957(n)) - 1). - Jianing Song, Jul 24 2018
Extensions
Name clarified by Jianing Song, Jul 24 2018
Comments