cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 57 results. Next

A264387 2*(1+2*a(n)) is the n-th even squarefree number A039956(n), n >= 1.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 77, 78, 79, 80, 81, 82, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Wolfdieter Lang, Dec 23 2015

Keywords

Comments

The asymptotic density of this sequence is 8/Pi^2 (A217739). - Amiram Eldar, Sep 26 2023

Crossrefs

Programs

  • Mathematica
    (# - 2)/4 & /@ Select[2 Range@ 202, SquareFreeQ] (* Michael De Vlieger, Dec 23 2015 *)
  • PARI
    lista(max) = forstep(k = 2, 4*max+2, 2, if(issquarefree(k), print1((k-2)/4, ", "))); \\ Amiram Eldar, Sep 26 2023

Formula

a(n) = (A039956(n) - 2)/4, n >= 1.

A080324 Union of even squarefree numbers (A039956) and squarefree numbers for which the number of prime factors is even (A030229).

Original entry on oeis.org

1, 2, 6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 14 2003

Keywords

Comments

k is a term of this sequence iff mu(k)^k > 0 respectively iff A080323(k) > 0.

Crossrefs

Extensions

Definition corrected by Georg Fischer at the suggestion of Amiram Eldar, Aug 17 2023

A120676 Number of prime factors of even squarefree numbers A039956.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 2, 2, 4, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 3, 2, 4, 2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 2, 4, 2, 3, 3, 2, 2, 3, 3, 2, 3, 4
Offset: 1

Views

Author

Lekraj Beedassy, Jun 24 2006

Keywords

Programs

  • Maple
    issquarefree := proc(n::integer) local nf, ifa ; nf := op(2,ifactors(n)) ; for ifa from 1 to nops(nf) do if op(2,op(ifa,nf)) >= 2 then RETURN(false) ; fi ; od : RETURN(true) ; end: A001221 := proc(n::integer) RETURN(nops(numtheory[factorset](n))) ; end: A039956 := proc(maxn) local n,a ; a := [2] ; for n from 4 to maxn by 2 do if issquarefree(n) then a := [op(a),n] ; fi ; od : RETURN(a) ; end: A120676 := proc(maxn) local a,n; a := A039956(maxn) ; for n from 1 to nops(a) do a := subsop(n=A001221(a[n]),a) ; od ; RETURN(a) ; end: nmax := 600 : a := A120676(nmax) : for n from 1 to nops(a) do printf("%d,",a[n]) ; od ; # R. J. Mathar, Aug 17 2006
  • Mathematica
    A264387[n_] := (# - 2)/4 & /@ Select[2 Range@n, SquareFreeQ]; A039956[n_] := 2*(1 + 2*A264387[n]); PrimeNu[A039956[50]] (* G. C. Greubel, May 16 2017 *)
    PrimeOmega/@Select[2*Range[300],SquareFreeQ] (* Harvey P. Dale, Jul 28 2019 *)

Formula

a(n) = A001221(A039956(n)) = A001222(A039956(n)) = A120675(n)+1.

Extensions

Corrected and extended by R. J. Mathar, Aug 17 2006

A005117 Squarefree numbers: numbers that are not divisible by a square greater than 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Keywords

Comments

1 together with the numbers that are products of distinct primes.
Also smallest sequence with the property that a(m)*a(k) is never a square for k != m. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001
Numbers k such that there is only one Abelian group with k elements, the cyclic group of order k (the numbers such that A000688(k) = 1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
Numbers k such that A007913(k) > phi(k). - Benoit Cloitre, Apr 10 2002
a(n) is the smallest m with exactly n squarefree numbers <= m. - Amarnath Murthy, May 21 2002
k is squarefree <=> k divides prime(k)# where prime(k)# = product of first k prime numbers. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 30 2004
Numbers k such that omega(k) = Omega(k) = A072047(k). - Lekraj Beedassy, Jul 11 2006
The LCM of any finite subset is in this sequence. - Lekraj Beedassy, Jul 11 2006
This sequence and the Beatty Pi^2/6 sequence (A059535) are "incestuous": the first 20000 terms are bounded within (-9, 14). - Ed Pegg Jr, Jul 22 2008
Let us introduce a function D(n) = sigma_0(n)/2^(alpha(1) + ... + alpha(r)), sigma_0(n) number of divisors of n (A000005), prime factorization of n = p(1)^alpha(1) * ... * p(r)^alpha(r), alpha(1) + ... + alpha(r) is sequence (A001222). Function D(n) splits the set of positive integers into subsets, according to the value of D(n). Squarefree numbers (A005117) has D(n)=1, other numbers are "deviated" from the squarefree ideal and have 0 < D(n) < 1. For D(n)=1/2 we have A048109, for D(n)=3/4 we have A060687. - Ctibor O. Zizka, Sep 21 2008
Numbers k such that gcd(k,k')=1 where k' is the arithmetic derivative (A003415) of k. - Giorgio Balzarotti, Apr 23 2011
Numbers k such that A007913(k) = core(k) = k. - Franz Vrabec, Aug 27 2011
Numbers k such that sqrt(k) cannot be simplified. - Sean Loughran, Sep 04 2011
Indices m where A057918(m)=0, i.e., positive integers m for which there are no integers k in {1,2,...,m-1} such that k*m is a square. - John W. Layman, Sep 08 2011
It appears that these are numbers j such that Product_{k=1..j} (prime(k) mod j) = 0 (see Maple code). - Gary Detlefs, Dec 07 2011. - This is the same claim as Mohammed Bouayoun's Mar 30 2004 comment above. To see why it holds: Primorial numbers, A002110, a subsequence of this sequence, are never divisible by any nonsquarefree number, A013929, and on the other hand, the index of the greatest prime dividing any n is less than n. Cf. A243291. - Antti Karttunen, Jun 03 2014
Conjecture: For each n=2,3,... there are infinitely many integers b > a(n) such that Sum_{k=1..n} a(k)*b^(k-1) is prime, and the smallest such an integer b does not exceed (n+3)*(n+4). - Zhi-Wei Sun, Mar 26 2013
The probability that a random natural number belongs to the sequence is 6/Pi^2, A059956 (see Cesàro reference). - Giorgio Balzarotti, Nov 21 2013
Booker, Hiary, & Keating give a subexponential algorithm for testing membership in this sequence without factoring. - Charles R Greathouse IV, Jan 29 2014
Because in the factorizations into prime numbers these a(n) (n >= 2) have exponents which are either 0 or 1 one could call the a(n) 'numbers with a fermionic prime number decomposition'. The levels are the prime numbers prime(j), j >= 1, and the occupation numbers (exponents) e(j) are 0 or 1 (like in Pauli's exclusion principle). A 'fermionic state' is then denoted by a sequence with entries 0 or 1, where, except for the zero sequence, trailing zeros are omitted. The zero sequence stands for a(1) = 1. For example a(5) = 6 = 2^1*3^1 is denoted by the 'fermionic state' [1, 1], a(7) = 10 by [1, 0, 1]. Compare with 'fermionic partitions' counted in A000009. - Wolfdieter Lang, May 14 2014
From Vladimir Shevelev, Nov 20 2014: (Start)
The following is an Eratosthenes-type sieve for squarefree numbers. For integers > 1:
1) Remove even numbers, except for 2; the minimal non-removed number is 3.
2) Replace multiples of 3 removed in step 1, and remove multiples of 3 except for 3 itself; the minimal non-removed number is 5.
3) Replace multiples of 5 removed as a result of steps 1 and 2, and remove multiples of 5 except for 5 itself; the minimal non-removed number is 6.
4) Replace multiples of 6 removed as a result of steps 1, 2 and 3 and remove multiples of 6 except for 6 itself; the minimal non-removed number is 7.
5) Repeat using the last minimal non-removed number to sieve from the recovered multiples of previous steps.
Proof. We use induction. Suppose that as a result of the algorithm, we have found all squarefree numbers less than n and no other numbers. If n is squarefree, then the number of its proper divisors d > 1 is even (it is 2^k - 2, where k is the number of its prime divisors), and, by the algorithm, it remains in the sequence. Otherwise, n is removed, since the number of its squarefree divisors > 1 is odd (it is 2^k-1).
(End)
The lexicographically least sequence of integers > 1 such that each entry has an even number of proper divisors occurring in the sequence (that's the sieve restated). - Glen Whitney, Aug 30 2015
0 is nonsquarefree because it is divisible by any square. - Jon Perry, Nov 22 2014, edited by M. F. Hasler, Aug 13 2015
The Heinz numbers of partitions with distinct parts. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} prime(j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] the Heinz number is 2*2*3*7*29 = 2436. The number 30 (= 2*3*5) is in the sequence because it is the Heinz number of the partition [1,2,3]. - Emeric Deutsch, May 21 2015
It is possible for 2 consecutive terms to be even; for example a(258)=422 and a(259)=426. - Thomas Ordowski, Jul 21 2015. [These form a subsequence of A077395 since their product is divisible by 4. - M. F. Hasler, Aug 13 2015]
There are never more than 3 consecutive terms. Runs of 3 terms start at 1, 5, 13, 21, 29, 33, ... (A007675). - Ivan Neretin, Nov 07 2015
a(n) = product of row n in A265668. - Reinhard Zumkeller, Dec 13 2015
Numbers without excess, i.e., numbers k such that A001221(k) = A001222(k). - Juri-Stepan Gerasimov, Sep 05 2016
Numbers k such that b^(phi(k)+1) == b (mod k) for every integer b. - Thomas Ordowski, Oct 09 2016
Boreico shows that the set of square roots of the terms of this sequence is linearly independent over the rationals. - Jason Kimberley, Nov 25 2016 (reference found by Michael Coons).
Numbers k such that A008836(k) = A008683(k). - Enrique Pérez Herrero, Apr 04 2018
The prime zeta function P(s) "has singular points along the real axis for s=1/k where k runs through all positive integers without a square factor". See Wolfram link. - Maleval Francis, Jun 23 2018
Numbers k such that A007947(k) = k. - Kyle Wyonch, Jan 15 2021
The Schnirelmann density of the squarefree numbers is 53/88 (Rogers, 1964). - Amiram Eldar, Mar 12 2021
Comment from Isaac Saffold, Dec 21 2021: (Start)
Numbers k such that all groups of order k have a trivial Frattini subgroup [Dummit and Foote].
Let the group G have order n. If n is squarefree and n > 1, then G is solvable, and thus by Hall's Theorem contains a subgroup H_p of index p for all p | n. Each H_p is maximal in G by order considerations, and the intersection of all the H_p's is trivial. Thus G's Frattini subgroup Phi(G), being the intersection of G's maximal subgroups, must be trivial. If n is not squarefree, the cyclic group of order n has a nontrivial Frattini subgroup. (End)
Numbers for which the squarefree divisors (A206778) and the unitary divisors (A077610) are the same; moreover they are also the set of divisors (A027750). - Bernard Schott, Nov 04 2022
0 = A008683(a(n)) - A008836(a(n)) = A001615(a(n)) - A000203(a(n)). - Torlach Rush, Feb 08 2023
From Robert D. Rosales, May 20 2024: (Start)
Numbers n such that mu(n) != 0, where mu(n) is the Möbius function (A008683).
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = mu(n)*n, where sigma(n) is the sum of divisors function (A000203). (End)
a(n) is the smallest root of x = 1 + Sum_{k=1..n-1} floor(sqrt(x/a(k))) greater than a(n-1). - Yifan Xie, Jul 10 2024
Number k such that A001414(k) = A008472(k). - Torlach Rush, Apr 14 2025
To elaborate on the formula from Greathouse (2018), the maximum of a(n) - floor(n*Pi^2/6 + sqrt(n)/17) is 10 at indices n = 48715, 48716, 48721, and 48760. The maximum is 11, at the same indices, if floor is taken individually for the two addends and the square root. If the value is rounded instead, the maximum is 9 at 10 indices between 48714 and 48765. - M. F. Hasler, Aug 08 2025

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 165, p. 53, Ellipses, Paris, 2008.
  • David S. Dummit and Richard M. Foote, Abstract algebra. Vol. 1999. Englewood Cliffs, NJ: David S.Prentice Hall, 1991.
  • Ivan M. Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 251.
  • Michael Pohst and Hans J. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A013929. Subsequence of A072774 and A209061.
Characteristic function: A008966 (mu(n)^2, where mu = A008683).
Subsequences: A000040, A002110, A235488.
Subsequences: numbers j such that j*a(k) is squarefree where k > 1: A056911 (k = 2), A261034 (k = 3), A274546 (k = 5), A276378 (k = 6).

Programs

  • Haskell
    a005117 n = a005117_list !! (n-1)
    a005117_list = filter ((== 1) . a008966) [1..]
    -- Reinhard Zumkeller, Aug 15 2011, May 10 2011
    
  • Magma
    [ n : n in [1..1000] | IsSquarefree(n) ];
    
  • Maple
    with(numtheory); a := [ ]; for n from 1 to 200 do if issqrfree(n) then a := [ op(a), n ]; fi; od:
    t:= n-> product(ithprime(k),k=1..n): for n from 1 to 113 do if(t(n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 07 2011
    A005117 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if numtheory[issqrfree](a) then return a; end if; end do: end if; end proc:  # R. J. Mathar, Jan 09 2013
  • Mathematica
    Select[ Range[ 113], SquareFreeQ] (* Robert G. Wilson v, Jan 31 2005 *)
    Select[Range[150], Max[Last /@ FactorInteger[ # ]] < 2 &] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
    NextSquareFree[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sf = n + sgn; While[c < Abs[k], While[ ! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[ sgn < 0, sf--, sf++]; c++]; sf + If[ sgn < 0, 1, -1]]; NestList[ NextSquareFree, 1, 70] (* Robert G. Wilson v, Apr 18 2014 *)
    Select[Range[250], MoebiusMu[#] != 0 &] (* Robert D. Rosales, May 20 2024 *)
  • PARI
    bnd = 1000; L = vector(bnd); j = 1; for (i=1,bnd, if(issquarefree(i),L[j]=i; j=j+1)); L
    
  • PARI
    {a(n)= local(m,c); if(n<=1,n==1, c=1; m=1; while( cMichael Somos, Apr 29 2005 */
    
  • PARI
    list(n)=my(v=vectorsmall(n,i,1),u,j); forprime(p=2,sqrtint(n), forstep(i=p^2, n, p^2, v[i]=0)); u=vector(sum(i=1,n,v[i])); for(i=1,n,if(v[i],u[j++]=i)); u \\ Charles R Greathouse IV, Jun 08 2012
    
  • PARI
    for(n=1, 113, if(core(n)==n, print1(n, ", "))); \\ Arkadiusz Wesolowski, Aug 02 2016
    
  • PARI
    S(n) = my(s); forsquarefree(k=1,sqrtint(n),s+=n\k[1]^2*moebius(k)); s;
    a(n) = my(min=1, max=231, k=0, sc=0); if(n >= 144, min=floor(zeta(2)*n - 5*sqrt(n)); max=ceil(zeta(2)*n + 5*sqrt(n))); while(min <= max, k=(min+max)\2; sc=S(k); if(abs(sc-n) <= sqrtint(n), break); if(sc > n, max=k-1, if(sc < n, min=k+1, break))); while(!issquarefree(k), k-=1); while(sc != n, my(j=1); if(sc > n, j = -1); k += j; sc += j; while(!issquarefree(k), k += j)); k; \\ Daniel Suteu, Jul 07 2022
    
  • PARI
    first(n)=my(v=vector(n),i); forsquarefree(k=1,if(n<268293,(33*n+30)\20,(n*Pi^2/6+0.058377*sqrt(n))\1), if(i++>n, return(v)); v[i]=k[1]); v \\ Charles R Greathouse IV, Jan 10 2023
    
  • PARI
    A5117=[1..3]; A005117(n)={if(n>#A5117, my(N=#A5117); A5117=Vec(A5117, max(n+999, N*5\4)); iferr(forsquarefree(k=A5117[N]+1, #A5117*Pi^2\6+sqrtint(#A5117)\17+11, A5117[N++]=k[1]),E,)); A5117[n]} \\ M. F. Hasler, Aug 08 2025
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 2) == n
    print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, Jul 31 2021
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A005117_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(x == 1 for x in factorint(n).values()),count(max(startvalue,1)))
    A005117_list = list(islice(A005117_gen(),20)) # Chai Wah Wu, May 09 2022
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A005117(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 22 2024

Formula

Limit_{n->oo} a(n)/n = Pi^2/6 (see A013661). - Benoit Cloitre, May 23 2002
Equals A039956 UNION A056911. - R. J. Mathar, May 16 2008
A122840(a(n)) <= 1; A010888(a(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
a(n) = A055229(A062838(n)) and a(n) > A055229(m) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010
A008477(a(n)) = 1. - Reinhard Zumkeller, Feb 17 2012
A055653(a(n)) = a(n); A055654(a(n)) = 0. - Reinhard Zumkeller, Mar 11 2012
A008966(a(n)) = 1. - Reinhard Zumkeller, May 26 2012
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
A056170(a(n)) = 0. - Reinhard Zumkeller, Dec 29 2012
A013928(a(n)+1) = n. - Antti Karttunen, Jun 03 2014
A046660(a(n)) = 0. - Reinhard Zumkeller, Nov 29 2015
Equals {1} UNION A000040 UNION A006881 UNION A007304 UNION A046386 UNION A046387 UNION A067885 UNION A123321 UNION A123322 UNION A115343 ... - R. J. Mathar, Nov 05 2016
|a(n) - n*Pi^2/6| < 0.058377*sqrt(n) for n >= 268293; this result can be derived from Cohen, Dress, & El Marraki, see links. - Charles R Greathouse IV, Jan 18 2018
From Amiram Eldar, Jul 07 2021: (Start)
Sum_{n>=1} (-1)^(a(n)+1)/a(n)^2 = 9/Pi^2.
Sum_{k=1..n} 1/a(k) ~ (6/Pi^2) * log(n).
Sum_{k=1..n} (-1)^(a(k)+1)/a(k) ~ (2/Pi^2) * log(n).
(all from Scott, 2006) (End)

A100484 The primes doubled; Even semiprimes.

Original entry on oeis.org

4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 22 2004

Keywords

Comments

Essentially the same as A001747.
Right edge of the triangle in A065342. - Reinhard Zumkeller, Jan 30 2012
A253046(a(n)) > a(n). - Reinhard Zumkeller, Dec 26 2014
Apart from first term, these are the tau2-primes as defined in [Anderson, Frazier] and [Lanterman]. - Michel Marcus, May 15 2019
For every positive integer b and each m in this sequence b^(m-1) == b (mod m). - Florian Baur, Nov 26 2021

Crossrefs

Subsequence of A091376. After the initial 4 also a subsequence of A039956.
Cf. A001748, A253046, A353478 (characteristic function).
Row 3 of A286625, column 3 of A286623.

Programs

Formula

a(n) = 2 * A000040(n).
a(n) = A001747(n+1).
n>1: A000005(a(n)) = 4; A000203(a(n)) = 3*A008864(n); A000010(a(n)) = A006093(n); intersection of A001358 and A005843.
a(n) = A116366(n-1, n-1) for n>1. - Reinhard Zumkeller, Feb 06 2006
a(n) = A077017(n+1), n>1. - R. J. Mathar, Sep 02 2008
A078834(a(n)) = A000040(n). - Reinhard Zumkeller, Sep 19 2011
a(n) = A087112(n, 1). - Reinhard Zumkeller, Nov 25 2012
A000203(a(n)) = 3*n/2 + 3, n > 1. - Wesley Ivan Hurt, Sep 07 2013

Extensions

Simpler definition.

A056911 Odd squarefree numbers.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 145, 149, 151
Offset: 1

Views

Author

James Sellers, Jul 07 2000

Keywords

Comments

From Daniel Forgues, May 27 2009: (Start)
For any prime p, there are as many squarefree numbers having p as a factor as squarefree numbers not having p as a factor amongst all the squarefree numbers (one-to-one correspondence, both cardinality aleph_0).
E.g. there are as many even squarefree numbers as there are odd squarefree numbers.
For any prime p, the density of squarefree numbers having p as a factor is 1/p of the density of squarefree numbers not having p as a factor.
E.g. the density of even squarefree numbers is 1/p = 1/2 of the density of odd squarefree numbers (which means that 1/(p + 1) = 1/3 of the squarefree numbers are even and p/(p + 1) = 2/3 are odd). As a consequence the n-th even squarefree number is very nearly p = 2 times the n-th odd squarefree number (which means that the n-th even squarefree number is very nearly (p + 1) = 3 times the n-th squarefree number while the n-th odd squarefree number is very nearly (p + 1)/p = 3/2 the n-th squarefree number).
For any prime p, the n-th squarefree number not divisible by p is: n * (1 + 1/p) * zeta(2) + O(n^(1/2)) = n * (1 + 1/p) * (Pi^2 / 6) + O(n^(1/2)) (End)

Examples

			The exponents in the prime factorization of 15 are all equal to 1, so 15 appears here. The number 75 does not appear in this sequence, as it is divisible by the square number 25.
		

Crossrefs

Subsequence of A005117 and A036537.
Equals A039956/2.
Cf. A238711 (subsequence).

Programs

  • Haskell
    a056911 n = a056911_list !! (n-1)
    a056911_list = filter ((== 1) . a008966) [1,3..]
    -- Reinhard Zumkeller, Aug 27 2011
    
  • Magma
    [n: n in [1..151 by 2] | IsSquarefree(n)]; // Bruno Berselli, Mar 03 2011
    
  • Mathematica
    Select[Range[1,151,2],SquareFreeQ] (* Ant King, Mar 17 2013 *)
  • PARI
    is(n)=n%2 && issquarefree(n) \\ Charles R Greathouse IV, Mar 26 2013
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(k=1,lim\1, if(k[1]%2, listput(v,k[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2025

Formula

A123314(A100112(a(n))) > 0. - Reinhard Zumkeller, Sep 25 2006
a(n) = n * (3/2) * zeta(2) + O(n^(1/2)) = n * (Pi^2 / 4) + O(n^(1/2)). - Daniel Forgues, May 27 2009
A008474(a(n)) * A000035(a(n)) = 1. - Reinhard Zumkeller, Aug 27 2011
Sum_{n>=1} 1/a(n)^s = ((2^s)* zeta(s))/((1+2^s)*zeta(2*s)). - Enrique Pérez Herrero, Sep 15 2012 [corrected by Amiram Eldar, Sep 26 2023]

A104141 Decimal expansion of 3/Pi^2.

Original entry on oeis.org

3, 0, 3, 9, 6, 3, 5, 5, 0, 9, 2, 7, 0, 1, 3, 3, 1, 4, 3, 3, 1, 6, 3, 8, 3, 8, 9, 6, 2, 9, 1, 8, 2, 9, 1, 6, 7, 1, 3, 0, 7, 6, 3, 2, 4, 0, 1, 6, 7, 3, 9, 6, 4, 6, 5, 3, 6, 8, 2, 7, 0, 9, 5, 6, 8, 2, 5, 1, 9, 3, 6, 2, 8, 8, 6, 7, 0, 6, 3, 2, 3, 5, 7, 3, 6, 2, 7, 8, 2, 1, 7, 7, 6, 8, 6, 5, 5, 1, 2, 8
Offset: 0

Views

Author

Lekraj Beedassy, Mar 07 2005

Keywords

Comments

3/Pi^2 is the limit of (Sum_{k=1..n} phi(k))/n^2, where phi(k) is Euler's totient A000010(k), i.e., of A002088(n)/A000290(n) as n tends to infinity.
The previous comment in the context of Farey series means that the length of the n-th Farey series can be approximated by multiplying this constant by n^2, "and that the approximation gets proportionally better as n gets larger", according to Conway and Guy. - Alonso del Arte, May 28 2011
The asymptotic density of the sequences of squarefree numbers with even number of prime factors (A030229), odd number of prime factors (A030059), and coprime to 6 (A276378). - Amiram Eldar, May 22 2020

Examples

			3/Pi^2 = 0.303963550927013314331638389629...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, p. 156.
  • L. E. Dickson, History of the Theory of Numbers, Vol. I pp. 126 Chelsea NY 1966.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 184.

Crossrefs

Programs

Formula

Equals Sum_{n>=1} 1/A039956(n)^2. - Amiram Eldar, May 22 2020
From Terry D. Grant, Oct 31 2020: (Start)
Equals (-1)*zeta(0)/zeta(2).
Equals 1/(zeta(2)/2).
Equals 1/A195055.
Equals (1/2)*Sum_{k>=1} mu(k)/k^2. (End)
From Hugo Pfoertner, Apr 23 2024: (Start)
Equals A059956/2.
Equals A082020/5. (End)

Extensions

More terms from Ryan Propper, Aug 04 2005

A081770 Numbers twice their squarefree kernel (A007947).

Original entry on oeis.org

4, 12, 20, 28, 44, 52, 60, 68, 76, 84, 92, 116, 124, 132, 140, 148, 156, 164, 172, 188, 204, 212, 220, 228, 236, 244, 260, 268, 276, 284, 292, 308, 316, 332, 340, 348, 356, 364, 372, 380, 388, 404, 412, 420, 428, 436, 444, 452, 460, 476, 492, 508, 516, 524
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2003

Keywords

Comments

From Amiram Eldar, Nov 02 2020: (Start)
Numbers k such that A280292(k) = 2.
The asymptotic density of this sequence is 1/Pi^2 (A092742). (End)

Examples

			84=2*2*3*7=2*(2*3*7)=2*rad(84), therefore 84 is a term.
		

Crossrefs

Programs

  • Haskell
    a081770 n = a081770_list !! (n-1)
    a081770_list = filter ((== 1) . a008966 . (`div` 4)) a017113_list
    -- Reinhard Zumkeller, Jul 13 2013
  • Mathematica
    4 * Select[Range[1, 100, 2], SquareFreeQ] (* Amiram Eldar, Nov 02 2020 *)
  • PARI
    is(n)=n%8==4 && issquarefree(n/4) \\ Charles R Greathouse IV, Jul 09 2013
    

Formula

a(n) = 2*A039956(n) = 4*A056911(n).

A087003 a(2n) = 0 and a(2n+1) = mu(2n+1); also the sum of Mobius function values computed for terms of 3x+1 trajectory started at n, provided that Collatz conjecture is true.

Original entry on oeis.org

1, 0, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1
Offset: 1

Views

Author

Labos Elemer, Oct 02 2003

Keywords

Comments

Observe that (these summatory) terms are from {-1,0,1}, so behave like Mobius function values, not like Mertens function values. Moreover, empirically: a(n) deviates from mu(initial-value) = mu(n) only if iv = n is an even squarefree number (i.e., it is from A039956). - This comment, like also the next one, concerns the original Collatz-related definition of this sequence. - Antti Karttunen, Sep 18 2017
From Marc LeBrun, Feb 19 2004: (Start)
Absolute values are the same as those of A091069. First consider the descending parts of Collatz (or 3x+1) trajectories, those that begin with even numbers 2^p k, with k odd. These go 2^p*k, 2^(p-1)*k, ... 2k, k. All but 2k and k are divisible by 4, a (rational) square, hence their mu values are all 0 and so they contribute nothing to the sum.
Then at the end, since mu(2k) = -mu(k), the last two steps cancel each other out. So every descending chain in a trajectory contributes 0. Of course the full trajectory of every even number consists entirely of descending chains, so A087003 is 0 for all even n.
On the other hand, the trajectory of every odd number consists of just that number followed by the trajectory of an even number (which contributes nothing) so A087003 is indeed equal to mu(n) for odd n.
(End)
The sequence is multiplicative; it may be defined as the Dirichlet inverse of the integers modulo 2 (A000035). - Gerard P. Michon, Apr 29 2007
a(n) appears in the second column of A156241 at every second row. - Mats Granvik, Feb 07 2009

Crossrefs

Cf. A000035 (the Dirichlet inverse), A318657/A318658 (the "Dirichlet Square Root").

Programs

  • Mathematica
    c[x_] := (1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1); c[1]=1; fpl[x_] := Delete[FixedPointList[c, x], -1] lf[x_] := Length[fpl[x]] Table[Apply[Plus, Table[MoebiusMu[Part[fpl[w], j]], {j, 1, lf[w]}]], {w, 1, 256}]
    Riffle[MoebiusMu[Range[1,121,2]],0] (* Harvey P. Dale, Jan 24 2025 *)
  • PARI
    A006370(n) = if(n%2, 3*n+1, n/2); \\ This function from Michael B. Porter, May 29 2010
    A087003(n) = { my(s=1); while(n>1, s += moebius(n); n = A006370(n)); (s); }; \\ Antti Karttunen, Sep 14 2017
    
  • PARI
    a(n)={sumdiv(n, d,  my(e=valuation(d, 2)); if(d==1<Andrew Howroyd, Aug 04 2018
    
  • PARI
    A087003(n) = ((n%2)*moebius(n)); \\ Antti Karttunen, Sep 01 2018

Formula

a(n) = A008683(n) + A292273(n). - Antti Karttunen, Sep 14 2017
Moebius transform of A209229. - Andrew Howroyd, Aug 04 2018
From Jianing Song, Aug 04 2018: (Start)
Multiplicative with a(2^e) = 0, a(p^e) = (-1 + (-1)^e)/2 for odd primes p.
Dirichlet g.f.: 1/((1 - 2^(-s))*zeta(s)).
(End)
From Antti Karttunen, Sep 01 2018: (Start)
a(n) = A000035(n)*A008683(n).
Dirichlet convolution of A318657/A046644 with itself.
(End)
Sum_{n>=1} a(n)/n^2 = A217739 . Sum_{n>=1} a(n)/n^3 = A233091. Sum_{n>=1} a(n)/n^4 = A300707. - R. J. Mathar, Dec 17 2024

Extensions

a(2n) = 0, a(2n+1) = mu(2n+1) added to the name as the new primary definition by Antti Karttunen, Sep 18 2017

A039957 Squarefree numbers congruent to 3 mod 4.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 31, 35, 39, 43, 47, 51, 55, 59, 67, 71, 79, 83, 87, 91, 95, 103, 107, 111, 115, 119, 123, 127, 131, 139, 143, 151, 155, 159, 163, 167, 179, 183, 187, 191, 195, 199, 203, 211, 215, 219, 223, 227, 231, 235, 239, 247, 251, 255
Offset: 1

Views

Author

Keywords

Comments

Negatives of odd fundamental discriminants D := b^2-4*a*c<0 of definite integer binary quadratic forms F=a*x^2+b*x*y+c*y^2. See Buell reference pp. 224-230. See 4*A089269 = A191483 for the even case and A003657 for combined even and odd numbers. - Wolfdieter Lang, Nov 07 2003
The asymptotic density of this sequence is 2/Pi^2 = 0.202642... (A185197). - Amiram Eldar, Feb 10 2021

References

  • Richard A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.
  • Duncan A. Buell, Binary Quadratic Forms, Springer-Verlag, NY, 1989.

Crossrefs

Programs

  • Haskell
    a039957 n = a039957_list !! (n-1)
    a039957_list = filter ((== 3) . (`mod` 4)) a005117_list
    -- Reinhard Zumkeller, Aug 15 2011
    
  • Magma
    [4*n+3: n in [0..63] | IsSquarefree(4*n+3)];  // Bruno Berselli, Mar 04 2011
    
  • Mathematica
    fQ[n_] := SquareFreeQ[n] && Mod[n, 4] == 3; Select[ Range@ 258, fQ] (* Robert G. Wilson v, Mar 02 2011 *)
    Select[Range[3,300,4],SquareFreeQ] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    is(n)=n%4==3 && issquarefree(n) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Offset corrected
Showing 1-10 of 57 results. Next