cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A030229 Numbers that are the product of an even number of distinct primes.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205, 206, 209, 210, 213, 214
Offset: 1

Views

Author

Keywords

Comments

These are the positive integers k with moebius(k) = 1 (cf. A008683). - N. J. A. Sloane, May 18 2021
From Enrique Pérez Herrero, Jul 06 2012: (Start)
This sequence and A030059 form a partition of the squarefree numbers set: A005117.
Also solutions to equation mu(n)=1.
Sum_{n>=1} 1/a(n)^s = (Zeta(s)^2 + Zeta(2*s))/(2*Zeta(s)*Zeta(2*s)).
(End)
A008683(a(n)) = 1; a(A220969(n)) mod 2 = 0; a(A220968(n)) mod 2 = 1. - Reinhard Zumkeller, Dec 27 2012
Characteristic function for values of a(n) = (mu(n)+1)! - 1, where mu(n) is the Mobius function (A008683). - Wesley Ivan Hurt, Oct 11 2013
Conjecture: For the matrix M(i,j) = 1 if j|i and 0 otherwise, Inverse(M)(a,1) = -1, for any a in this sequence. - Benedict W. J. Irwin, Jul 26 2016
Solutions to the equation Sum_{d|n} mu(d)*d = Sum_{d|n} mu(n/d)*d. - Torlach Rush, Jan 13 2018
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = n, where sigma(n) is the sum of divisors function (A000203). - Robert D. Rosales, May 20 2024
From Peter Munn, Oct 04 2019: (Start)
Numbers n such that omega(n) = bigomega(n) = 2*k for some integer k.
The squarefree numbers in A000379.
The squarefree numbers in A028260.
This sequence is closed with respect to the commutative binary operation A059897(.,.), thus it forms a subgroup of the positive integers under A059897(.,.). A006094 lists a minimal set of generators for this subgroup. The lexicographically earliest ordered minimal set of generators is A100484 with its initial 4 removed.
(End)
The asymptotic density of this sequence is 3/Pi^2 (cf. A104141). - Amiram Eldar, May 22 2020

Examples

			(empty product), 2*3, 2*5, 2*7, 3*5, 3*7, 2*11, 2*13, 3*11, 2*17, 5*7, 2*19, 3*13, 2*23,...
		

References

  • B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Commentary, see p. 23; AMS Providence RI 1995
  • S. Ramanujan, Collected Papers, pp. xxiv, 21.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a030229 n = a030229_list !! (n-1)
    a030229_list = map (+ 1) $ elemIndices 1 a008683_list
    -- Reinhard Zumkeller, Dec 27 2012
    
  • Maple
    a := n -> `if`(numtheory[mobius](n)=1,n,NULL); seq(a(i),i=1..214); # Peter Luschny, May 04 2009
    with(numtheory); t := [ ]: f := [ ]: for n from 1 to 250 do if mobius(n) = 1 then t := [ op(t), n ] else f := [ op(f), n ]; fi; od: t; # Wesley Ivan Hurt, Oct 11 2013
    # alternative
    A030229 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if numtheory[mobius](a) = 1 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A030229(n),n=1..40) ; # R. J. Mathar, Sep 22 2020
  • Mathematica
    Select[Range[214], MoebiusMu[#] == 1 &] (* Jean-François Alcover, Oct 04 2011 *)
  • PARI
    isA030229(n)= #(n=factor(n)[,2]) % 2 == 0 && (!n || vecmax(n)==1 )
    
  • PARI
    is(n)=moebius(n)==1 \\ Charles R Greathouse IV, Jan 31 2017
    for(n=1,500, isA030229(n)&print1(n",")) \\ M. F. Hasler
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A030229(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,x.bit_length(),2)))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax # Chai Wah Wu, Aug 29 2024

Formula

a(n) < n*Pi^2/3 infinitely often; a(n) > n*Pi^2/3 infinitely often. - Charles R Greathouse IV, Oct 04 2011; corrected Sep 07 2017
{a(n)} = {m : m = A059897(A030059(k), p), k >= 1} for prime p, where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Oct 04 2019

A030059 Numbers that are the product of an odd number of distinct primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67, 70, 71, 73, 78, 79, 83, 89, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 127, 130, 131, 137, 138, 139, 149, 151, 154, 157, 163, 165, 167, 170, 173, 174, 179, 181, 182, 186, 190, 191, 193
Offset: 1

Views

Author

Keywords

Comments

From Enrique Pérez Herrero, Jul 06 2012: (Start)
This sequence and A030229 partition the squarefree numbers: A005117.
Also solutions to the equation mu(n) = -1.
Sum_{n>=1} 1/a(n)^s = (zeta(s)^2 - zeta(2*s))/(2*zeta(s)*zeta(2*s)). (End) [See A088245 and the Hardy reference. - Wolfdieter Lang, Oct 18 2016]
The lexicographically least sequence of integers > 1 such that for each entry, the number of proper divisors occurring in the sequence is equal to 0 modulo 3. - Masahiko Shin, Feb 12 2018
The asymptotic density of this sequence is 3/Pi^2 (A104141). - Amiram Eldar, May 22 2020
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = -n, where sigma(n) is the sum of divisors function (A000203). - Robert D. Rosales, May 20 2024

References

  • B. C. Berndt & R. A. Rankin, Ramanujan: Letters and Commentary, see p. 23; AMS Providence RI 1995.
  • G. H. Hardy, Ramanujan, AMS Chelsea Publishing, 2002, pp. 64 - 65, (misprint on p. 65, line starting with Hence: it should be ... -1/Zeta(s) not ... -Zeta(s)).
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv, 21.

Crossrefs

Programs

  • Maple
    a := n -> `if`(numtheory[mobius](n)=-1,n,NULL); seq(a(i),i=1..193); # Peter Luschny, May 04 2009
    # alternative
    A030059 := proc(n)
        option remember;
        local a;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if numtheory[mobius](a) = -1 then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 22 2020
  • Mathematica
    Select[Range[300], MoebiusMu[#] == -1 &] (* Enrique Pérez Herrero, Jul 06 2012 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); #f%2 && vecmax(f)==1 \\ Charles R Greathouse IV, Oct 16 2015
    
  • PARI
    is(n)=moebius(n)==-1 \\ Charles R Greathouse IV, Jan 31 2017
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A030059(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-primepi(x)-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(3,x.bit_length(),2)))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax # Chai Wah Wu, Aug 29 2024

Formula

omega(a(n)) = A001221(a(n)) gives A005408. {primes A000040} UNION {sphenic numbers A007304} UNION {numbers that are divisible by exactly 5 different primes A051270} UNION {products of 7 distinct primes (squarefree 7-almost primes) A123321} UNION {products of 9 distinct primes; also n has exactly 9 distinct prime factors and n is squarefree A115343} UNION.... - Jonathan Vos Post, Oct 19 2007
a(n) < n*Pi^2/3 infinitely often; a(n) > n*Pi^2/3 infinitely often. - Charles R Greathouse IV, Sep 07 2017

Extensions

More terms from David W. Wilson

A003657 Discriminants of imaginary quadratic fields, negated.

Original entry on oeis.org

3, 4, 7, 8, 11, 15, 19, 20, 23, 24, 31, 35, 39, 40, 43, 47, 51, 52, 55, 56, 59, 67, 68, 71, 79, 83, 84, 87, 88, 91, 95, 103, 104, 107, 111, 115, 116, 119, 120, 123, 127, 131, 132, 136, 139, 143, 148, 151, 152, 155, 159, 163, 164, 167, 168, 179, 183, 184, 187, 191
Offset: 1

Views

Author

Keywords

Comments

Negative of fundamental discriminants D := b^2-4*a*c<0 of definite integer binary quadratic forms F=a*x^2+b*x*y+c*y^2. See Buell reference pp. 223-234. See 4*A089269 = A191483 for even a(n) and A039957 for odd a(n). - Wolfdieter Lang, Nov 07 2003
All prime numbers in the set of the absolute values of negative fundamental discriminants are Gaussian primes (A002145). - Paul Muljadi, Mar 29 2008
Complement: 1, 2, 5, 6, 9, 10, 12, 13, 14, 16, 17, 18, 21, 22, 25, 26, 27, 28, 29, 30, 32, 33, 34, 36, ..., . - Robert G. Wilson v, Jun 04 2011
The asymptotic density of this sequence is 3/Pi^2 (A104141). - Amiram Eldar, Feb 23 2021

References

  • Duncan A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989.
  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, p. 514.
  • Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002145, A003658, A039957 (odd terms), A191483 (even terms), A104141.

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *); -Select[-Range@ 194, FundamentalDiscriminantQ] (* Robert G. Wilson v, Jun 01 2011 *)
  • PARI
    ok(n)={isfundamental(-n)} \\ Andrew Howroyd, Jul 20 2018
    
  • PARI
    ok(n)={n<>1 && issquarefree(n/2^valuation(n,2)) && (n%4==3 || n%16==8 || n%16==4)} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..200) if is_fundamental_discriminant(-n)==1] # G. C. Greubel, Mar 01 2019

A003968 Möbius transform of A003959.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 18, 12, 10, 11, 18, 13, 14, 15, 54, 17, 24, 19, 30, 21, 22, 23, 54, 30, 26, 48, 42, 29, 30, 31, 162, 33, 34, 35, 72, 37, 38, 39, 90, 41, 42, 43, 66, 60, 46, 47, 162, 56, 60, 51, 78, 53, 96, 55, 126, 57, 58, 59, 90, 61, 62, 84, 486, 65, 66, 67, 102, 69
Offset: 1

Views

Author

Keywords

Comments

a(n) = n for squarefree n; otherwise, a(n) > n. - Ivan Neretin, May 13 2015
Dirichlet inverse of A062953. - Werner Schulte, Oct 25 2018

Crossrefs

Programs

  • Mathematica
    Table[{pp, aa} = Transpose[FactorInteger[n]]; Times @@ (pp*(pp + 1)^(aa - 1)), {n, 70}]  (* Ivan Neretin, May 13 2015 *)
  • PARI
    a(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i,2]-1); f[i, 2] = 1); factorback(f);} \\ Michel Marcus, Feb 26 2015

Formula

Multiplicative with a(p^e) = p(p+1)^(e-1). - David W. Wilson, Sep 01 2001
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 + 1/(p^3 - p^2 - p)) = A104141/A005596 = 0.8128327996... . - Amiram Eldar, Oct 23 2022

Extensions

More terms from David W. Wilson, Aug 29 2001

A276378 Numbers k such that 6*k is squarefree.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 173, 179, 181, 185, 187, 191, 193, 197, 199, 203, 205, 209, 211
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 02 2016

Keywords

Comments

These are the numbers from A005117 that are not divisible by 2 and 3.
Squarefree numbers coprime to 6. - Robert Israel, Sep 02 2016
Numbers k such that A008588(k) is in A005117. - Felix Fröhlich, Sep 02 2016
The asymptotic density of this sequence is 3/Pi^2 (A104141). - Amiram Eldar, May 22 2020
From Peter Munn, Nov 20 2020: (Start)
The products generated from each subset of A215848 (primes greater than 3).
Closed under the commutative binary operation A059897(.,.), forming a subgroup of the positive integers under A059897. (End)
Multiplied by 6 we have 6, 30, 42, 66, 78, 102, ..., the values that may appear in A076978 after the 1, 2. [Don Reble, Dec 02 2020] - R. J. Mathar, Dec 15 2020
By the von Staudt-Clausen theorem, denominators of Bernoulli numbers are of the form 6*a(n) for some n. - Charles R Greathouse IV, May 16 2024

Examples

			5 is in this sequence because 6*5 = 30 = 2*3*5 is squarefree.
		

Crossrefs

Numbers m such that k*m is squarefree: A005117 (k = 1), A056911 (k = 2), A261034 (k = 3), A274546 (k = 5).
Subsequence of A007310, A300957, and A339690.

Programs

  • Magma
    [n: n in [1..230] | IsSquarefree(6*n)];
    
  • Maple
    select(numtheory:-issqrfree, [seq(seq(6*i+j,j=[1,5]),i=0..100)]); # Robert Israel, Sep 02 2016
  • Mathematica
    Select[Range@ 212, SquareFreeQ[6 #] &] (* Michael De Vlieger, Sep 02 2016 *)
  • PARI
    is(n) = issquarefree(6*n) \\ Felix Fröhlich, Sep 02 2016

Formula

{a(n) : n >= 1} = {A003961(A003961(A005117(n))) : n >= 1} = {A003961(A056911(n)) : n >= 1}. - Peter Munn, Nov 20 2020
Sum_{n>=1} 1/a(n)^s = (6^s)*zeta(s)/((1+2^s)*(1+3^s)*zeta(2*s)), s>1. - Amiram Eldar, Sep 26 2023

A236435 Numerator of Product_{k=1..n-1} (1 + 1/prime(k)).

Original entry on oeis.org

1, 3, 2, 12, 96, 1152, 2304, 41472, 165888, 3981312, 119439360, 3822059520, 7644119040, 321052999680, 1284211998720, 61642175938560, 3328677500682240, 199720650040934400, 399441300081868800, 1597765200327475200, 115039094423578214400, 230078188847156428800, 18406255107772514304000
Offset: 1

Views

Author

Jonathan Sondow, Feb 01 2014

Keywords

Comments

A236436(n)/(a(n)*zeta(2)) is the asymptotic density of the prime(n-1)-rough squarefree numbers (squarefree numbers whose prime factors are all >= prime(n-1)) for n >= 2. E.g., A236436(2)/(a(2)*zeta(2)) = 2/(3*zeta(2)) = 4/Pi^2 (A185199) is the asymptotic density of the odd squarefree numbers (A056911), and A236436(3)/(a(3)*zeta(2)) = 1/(2*zeta(2)) = 3/Pi^2 (A104141) is the asymptotic density of the 5-rough squarefree numbers (A276378). - Amiram Eldar, Aug 26 2025

Examples

			(1 + 1/2)*(1 + 1/3)*(1 + 1/5)*(1 + 1/7) = 96/35 has numerator a(5) = 96.
Fractions begin with 1, 3/2, 2, 12/5, 96/35, 1152/385, 2304/715, 41472/12155, 165888/46189, 3981312/1062347, 119439360/30808063, 3822059520/955049953, ...
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979; Theorem 429.

Crossrefs

Programs

  • Mathematica
    Numerator@Table[ Product[ 1 + 1/Prime[ k], {k, 1, n-1}], {n, 1, 23}]

Formula

a(n+1) / A236436(n+1) = (A072045(n)/A072044(n)) / (A038110(n+1)/A060753(n+1)) because 1+x = (1-x^2) / (1-x).
a(n) / A236436(n) = Product_{k=1..n-1} (1 + 1/prime(k)) ~ (6/Pi^2)*exp(gamma)*log(n) as n -> infinity, by Mertens's theorem.

A064018 a(n) = A002088(10^n) = Sum_{k <= 10^n} phi(k), sum of the Euler totients phi = A000010.

Original entry on oeis.org

1, 32, 3044, 304192, 30397486, 3039650754, 303963552392, 30396356427242, 3039635516365908, 303963551173008414, 30396355092886216366, 3039635509283386211140, 303963550927059804025910, 30396355092702898919527444, 3039635509270144893910357854, 303963550927013509478708835152
Offset: 0

Views

Author

Robert G. Wilson v, Sep 07 2001

Keywords

Comments

Asymptotically, A002088(n) ~ 0.30396355...*n^2 = (3/Pi^2)*n^2, see A104141 and A002088. - Michael B. Porter, Mar 08 2013 [corrected by M. F. Hasler, Apr 18 2015]

Examples

			a(1) = phi(1) + ... + phi(10) = 1 + 1 + 2 + 2 + 4 + 2 + 6 + 4 + 6 + 4 = 32.
		

Crossrefs

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[ k <= 10^n, s = s + EulerPhi[ k ]; k++ ]; Print[ s ], {n, 0, 8} ]
  • Python
    # See LINKS. - Lucas A. Brown, Jun 08 2025

Formula

a(n) = Sum_{k <= 10^n} A000010(k).

Extensions

More terms from Robert G. Wilson v, Sep 07 2001
a(10)-a(11) from Donovan Johnson, Feb 06 2010
a(12) from Donovan Johnson, Feb 07 2012
a(13)-a(14) from Hiroaki Yamanouchi, Jul 06 2014
a(15) from Asif Ahmed, Apr 16 2015
Name edited by Michel Marcus and M. F. Hasler, Apr 16 and Apr 18 2015

A262228 Deficiency sequence: a(0) = 1, a(n) is the smallest prime p > a(n-1) such that the product of a(i), 1 <= i < n, is deficient (belongs to A005100).

Original entry on oeis.org

1, 2, 5, 11, 59, 653, 84761, 2763189059, 377406001499268899, 2638619515495963542360422694651593, 135435890329895562961039215198033899386421965445591860752412324961
Offset: 0

Views

Author

Chayim Lowen, Sep 15 2015

Keywords

Comments

The product of the first n+1 terms is the smallest deficient multiple of the product of the first n terms.
The product of any finite number of distinct terms of this sequence is deficient.
a(n) for n > 0 is the lexicographically earliest sequence of primes P, such that the asymptotic density of the squarefree numbers (A005117) which are not divisible by any prime in P is 3/Pi^2 (A104141), i.e., half the asymptotic density of all the squarefree numbers. - Amiram Eldar, Nov 30 2020

Examples

			a(3) = 11 because A001065(2*5*7) = A001065(70) = 74 > 70, and A001065(2*5*11) = A001065(110) = 106 < 110.
From _M. F. Hasler_, Dec 14 2017: (Start)
Let Q(x) = 1/(2x/sigma(x) - 1), P(n) = Product( a(k), k<n): P(0) = 1 (empty product). Then:
Q(P(0)) = 1, a(0) = nextprime(1) = 2 = P(1).
Q(P(1)) = 3, a(1) = 5. (2*3 is perfect, P(2) = 2*5 is deficient.)
Q(P(2)) = 9, a(2) = 11. (2*5*7 is weird, P(3) = 2*5*11 is deficient.)
Q(P(3)) = 54, a(3) = 59. (P(3)*53 is weird, P(4) = 2*5*11*59 is deficient.)
Q(P(4)) = 648, a(4) = 653. (P(4)*647 is weird, P(5) = 2*5*11*59*653 is deficient.)
Q(P(5)) = 84758.4, a(5) = 84761. (P(5)*84751 is abundant and semiperfect: sum of all proper divisors except {1, 2, 11, 22, 55, 59, 590}; P(6) = 2*5*11*59*653*84761 is deficient.) (End)
		

Crossrefs

Cf. A001065, A005100, A005117, A104141, A151800 (nextprime).
Cf. A002975 (primitive weird numbers), A000203 (sigma), A295001 (same definition but a(0) = 4).

Programs

  • Mathematica
    a[0]=1; a[n_] := a[n] = NextPrime[1/(2*Product[a[i],{i,1,n-1}]/Product[a[i]+1,{i,1,n-1}]-1)]; Array[a, 11, 0] (* Amiram Eldar, Jun 10 2019 *)
  • PARI
    lista(nn) = {print1(p=1, ", "); vp = [p]; for (n=2, nn, np = nextprime(1+floor(1/(2*prod(i=2, n-1, vp[i]/(vp[i]+1))-1))); vp = concat(vp, np); print1(np, ", "););} \\ Michel Marcus, Oct 16 2015
    
  • PARI
    a=List(); m=1; for(n=0, 13, listput(a, p=nextprime(1\(2/sigma(m,-1)-1)+1)); p>default(primelimit)&&addprimes(p); m*=p); a \\ M. F. Hasler, Dec 14 2017

Formula

a(n) = A151800(floor(1/(2*(Product_{i=2..n-1} a(i)/(a(i)+1))-1))), where A151800 is the "next larger prime" function.
Lim_{n->infinity} A001065(Product_{i=0..n} a(i))/(Product_{i=0..n} a(i)) = 1. [Corrected by M. F. Hasler, Dec 04 2017]
Conjecture: log(a(n)) ~ e^(an+b) where a and b are approximately 0.6 and -1.6 respectively.

A070549 a(n) = Cardinality{ k in range 1 <= k <= n such that Moebius(k) = -1 }.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 20, 21, 22, 22, 22, 23, 24, 24, 25, 25, 25, 25, 25, 26
Offset: 1

Views

Author

Benoit Cloitre, May 02 2002

Keywords

Comments

mu(k)=-1 if k is the product of an odd number of distinct primes. See A057627 for mu(k)=0.

Crossrefs

Partial sums of A252233.

Programs

  • Maple
    ListTools:-PartialSums([seq(-min(numtheory:-mobius(n),0),n=1..100)]); # Robert Israel, Jan 08 2018
  • Mathematica
    a[n_]:=Sum[Boole[MoebiusMu[k]==-1],{k,n}]; Array[a,78] (* Stefano Spezia, Jan 30 2023 *)
  • PARI
    for(n=1,150,print1(sum(i=1,n,if(moebius(i)+1,0,1)),","))

Formula

From Amiram Eldar, Oct 01 2023: (Start)
a(n) = (A013928(n+1) - A002321(n))/2.
a(n) = A013928(n+1) - A070548(n).
a(n) = A070548(n) - A002321(n).
a(n) ~ (3/Pi^2) * n. (End)

A088246 Decimal expansion of 21/(2*Pi^2).

Original entry on oeis.org

1, 0, 6, 3, 8, 7, 2, 4, 2, 8, 2, 4, 4, 5, 4, 6, 6, 0, 0, 1, 6, 0, 7, 3, 4, 3, 6, 3, 7, 0, 2, 1, 4, 0, 2, 0, 8, 4, 9, 5, 7, 6, 7, 1, 3, 4, 0, 5, 8, 5, 8, 8, 7, 6, 2, 8, 7, 8, 8, 9, 4, 8, 3, 4, 8, 8, 8, 8, 1, 7, 7, 7, 0, 1, 0, 3, 4, 7, 2, 1, 3, 2, 5, 0, 7, 6, 9, 7, 3, 7, 6, 2, 1, 9, 0, 2, 9, 2, 9, 4, 9, 4
Offset: 1

Views

Author

Eric W. Weisstein, Sep 25 2003

Keywords

Examples

			1.06387242824454660016073436370214020849576713405858...
		

Crossrefs

Programs

Formula

Equals Sum_{k>=1} 1/A030229(k)^2. - Amiram Eldar, May 23 2020
Equals zeta(4)/zeta(6). - Terry D. Grant, Nov 07 2020
Equals Sum_{k>=1} A007434(k)/k^6. - Amiram Eldar, Jan 25 2024
Showing 1-10 of 28 results. Next