cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A191410 Class number, k, of n, i.e.; imaginary quadratic fields negated Q(sqrt(-n))=k, or 0 if n is not a fundamental discriminant (A003657).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 4, 4, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 3, 4, 0, 0, 6, 2, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 5, 6, 0
Offset: 1

Views

Author

Robert G. Wilson v, Jun 01 2011

Keywords

Crossrefs

a(n)= 0: n/a The complement of A003657; a(n)= 1: A014602; a(n)= 2: A014603; a(n)= 3: A006203; a(n)= 4: A013658; a(n)= 5: A046002; a(n)= 6: A046003; a(n)= 7: A046004; a(n)= 8: A046005; a(n)= 9: A046006; a(n)=10: A046007; a(n)=11: A046008; a(n)=12: A046009; a(n)=13: A046010; a(n)=14: A046011; a(n)=15: A046012; a(n)=16: A046013; a(n)=17: A046014; a(n)=18: A046015; a(n)=19: A046016; a(n)=20: A123563; a(n)=21: A046018; a(n)=22: A171724; a(n)=23: A046020; a(n)=24: A048925; a(n)=25: A056987; etc.

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *);
    f[n_] := If[ !FundamentalDiscriminantQ@ -n, 0, NumberFieldClassNumber@ Sqrt@ -n]; Array[f, 105]
  • PARI
    a(n)=if(isfundamental(-n),qfbclassno(-n),0) \\ Charles R Greathouse IV, Nov 20 2012

A232932 The least positive integer k such that Kronecker(D/k) = -1 where D runs through all negative fundamental discriminants (-A003657).

Original entry on oeis.org

2, 3, 3, 5, 2, 7, 2, 11, 5, 13, 3, 2, 7, 3, 2, 5, 2, 3, 3, 11, 2, 2, 5, 7, 3, 2, 13, 5, 3, 2, 7, 3, 11, 2, 11, 2, 7, 11, 7, 2, 3, 2, 5, 3, 2, 5, 3, 3, 5, 2, 11, 2, 13, 5, 5, 2, 5, 3, 2, 7, 2, 3, 2, 2, 5, 13, 2, 3, 2, 5, 17, 3, 2, 7, 3, 3, 5, 2, 13, 2, 7, 5, 19, 2, 3, 11, 3, 2, 5, 2, 3, 3, 7, 2, 5, 2, 5, 11, 5, 3, 2, 5, 3, 2, 11, 2, 3, 7, 2, 2, 11, 7, 3, 2, 5, 3, 2, 5, 3, 3, 2, 11, 2, 19, 5, 5, 2, 3, 2, 17, 3, 2, 7, 2, 3, 3, 13, 2, 5, 2, 5, 11, 7, 3, 2, 7, 3, 13, 2, 3, 5, 2, 2
Offset: 1

Views

Author

Steven Finch, Dec 02 2013

Keywords

Comments

From Jianing Song, Feb 14 2019: (Start)
a(n) is necessarily prime. Otherwise, if a(n) is not prime, we have (D/p) = 0 or 1 for all prime divisors p of a(n), so (D/a(n)) must be 0 or 1 too, a contradiction.
a(n) is the least inert prime in the imaginary quadratic field with discriminant D, D = -A003657(n). (End)

Examples

			A003657(4) = 8, (-8/5) = -1, (-8/3) = 1 and (-8/2) = 0, so a(4) = 5.
		

Crossrefs

Programs

  • Mathematica
    nMax = 200; FundamentalDiscriminantQ[n_] := n != 1 && (Mod[n, 4] == 1 || ! Unequal[Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]]; discrims = Select[-Range[4 nMax], FundamentalDiscriminantQ]; f[d_] := For[k = 1, True, k++, If[FreeQ[{0, 1}, KroneckerSymbol[d, k]], Return[k] ] ]; a[n_] := f[discrims[[n]]]; Table[a[n], {n, 1, nMax}] (* Jean-François Alcover, Nov 05 2016, after Robert G. Wilson v *)

Formula

a(n) = A306220(A003657(n)). - Jianing Song, Feb 14 2019

Extensions

Name simplified by Jianing Song, Feb 14 2019

A003640 Number of genera of imaginary quadratic field with discriminant -k, k = A003657(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 4, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 4, 2, 1, 1, 4, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 1, 4, 4, 2, 2, 1, 2, 2, 2, 1, 4, 2, 4, 1, 4, 2, 1, 4, 4, 1, 2, 2, 2, 2, 2, 2, 2, 1, 4, 1, 4, 2, 2, 2, 2, 1, 2
Offset: 1

Views

Author

Keywords

Comments

The number of genera of a quadratic field is equal to the number of elements x in the class group such that x^2 = e where e is the identity. - Jianing Song, Jul 24 2018

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    okQ[n_] := n != 1 && SquareFreeQ[n/2^IntegerExponent[n, 2]] && (Mod[n, 4] == 3 || Mod[n, 16] == 8 || Mod[n, 16] == 4);
    Reap[For[n = 1, n <= 1000, n++, If[okQ[n], Sow[2^(PrimeNu[n]-1)]]]][[2, 1]] (* Jean-François Alcover, Aug 16 2019, after Andrew Howroyd *)
  • PARI
    for(n=1, 1000, if(isfundamental(-n), print1(2^(omega(n) - 1), ", "))) \\ Andrew Howroyd, Jul 24 2018
    
  • PARI
    for(n=1, 1000, if(isfundamental(-n), print1(2^#select(t->t%2==0, quadclassunit(-n).cyc), ", "))) \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = 2^(t-1) where t = number of distinct prime divisors of A003657(n).
a(n) = 2^(omega(A003657(n)) - 1).

Extensions

Name clarified and offset corrected by Jianing Song, Jul 24 2018

A006641 Class number of forms with discriminant -A003657(n), or equivalently class number of imaginary quadratic field with discriminant -A003657(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 4, 2, 1, 5, 2, 2, 4, 4, 3, 1, 4, 7, 5, 3, 4, 6, 2, 2, 8, 5, 6, 3, 8, 2, 6, 10, 4, 2, 5, 5, 4, 4, 3, 10, 2, 7, 6, 4, 10, 1, 8, 11, 4, 5, 8, 4, 2, 13, 4, 9, 4, 3, 6, 14, 4, 7, 5, 4, 12, 2
Offset: 1

Views

Author

Keywords

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 514.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003657.

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric W. Weisstein *);
    NumberFieldClassNumber@ Sqrt@ # & /@ Select[-Range@ 300, FundamentalDiscriminantQ]
  • PARI
    for(n=1, 300, if(isfundamental(-n), print1(quadclassunit(-n).no, ", "))) \\ Andrew Howroyd, Jul 23 2018
    
  • Sage
    [1] + [QuadraticField(-n, 'a').class_number() for n in (0..200) if is_fundamental_discriminant(-n) and not is_square(n)] # G. C. Greubel, Mar 01 2019

A306500 a(n) is the smallest prime p such that Sum_{primes q <= p} Kronecker(-A003657(n),q) > 0, or 0 if no such prime exists.

Original entry on oeis.org

608981813029, 26861, 2, 3, 5, 2, 11, 3, 2, 5, 2, 11, 2, 11, 53, 2, 13, 17, 2, 3, 5, 163, 3, 2, 2, 11, 5, 2, 31, 31, 2, 2, 3, 23, 2, 41, 3, 2, 13, 47, 2, 5, 19, 7, 11, 2, 191, 2, 3, 19, 2, 15073, 3, 2, 29, 5, 2, 41, 109, 2, 11, 2, 31, 59, 3, 2, 19, 2, 11, 53, 2, 1019, 137
Offset: 1

Views

Author

Jianing Song, Feb 19 2019

Keywords

Comments

Let D be a fundamental discriminant (only the case where D is fundamental is considered because {Kronecker(D,k)} forms a primitive real Dirichlet character with period |D| if and only if D is fundamental), it seems that Sum_{primes q <= p} Kronecker(D,p) <= 0 occurs much more often than its opposite does. This can be seen as a variation of the well-known "Chebyshev's bias". Sequence gives the least prime that violates the inequality when D runs through all negative discriminants.
For any D, the primes p such that Kronecker(D,p) = 1 has asymptotic density 1/2 in all the primes, so a(n) should be > 0 for all n.
Actually, for most n, a(n) is relatively small compared with A003657(n). There are only 127 n's in [1, 3043] (there are 3043 terms in A003657 below 10000) such that a(n) > A003657(n). The largest terms among the 127 corresponding terms are a(1) = 608981813029 (with A003657(1) = 3), a(1955) = 24996194023 (with A003657(1955) = 6240) and a(847) = 1694759239 (with A003657(847) = 2787).

Examples

			Let D = -A003657(18) = -52, j(k) = Sum_{primes q <= prime(k)} Kronecker(D,q).
For k = 1, Kronecker(-52,2) = 0, so j(1) = 0;
For k = 2, Kronecker(-52,3) = -1, so j(2) = -1;
For k = 3, Kronecker(-52,5) = -1, so j(3) = -2;
For k = 4, Kronecker(-52,7) = +1, so j(4) = -1;
For k = 5, Kronecker(-52,11) = +1, so j(5) = 0;
For k = 6, Kronecker(-52,13) = 0, so j(6) = 0;
For k = 7, Kronecker(-52,17) = +1, so j(7) = 1.
The first time for j > 0 occurs at the prime 17, so a(18) = 17.
		

Crossrefs

Cf. A003657, A306499 (the positive discriminants case).
The indices of primes are given in A306503.

Programs

  • PARI
    b(n) = my(i=0); forprime(p=2,oo,i+=kronecker(n,p); if(i>0, return(p)))
    print1(608981813029, ", "); for(n=4, 300, if(isfundamental(-n), print1(b(-n), ", ")))

A306538 The least prime q such that Kronecker(D/q) = 1 where D runs through all negative fundamental discriminants (-A003657).

Original entry on oeis.org

7, 5, 2, 3, 3, 2, 5, 3, 2, 5, 2, 3, 2, 7, 11, 2, 5, 7, 2, 3, 3, 17, 3, 2, 2, 3, 5, 2, 13, 5, 2, 2, 3, 3, 2, 7, 3, 2, 11, 11, 2, 3, 7, 5, 5, 2, 19, 2, 3, 3, 2, 41, 3, 2, 13, 3, 2, 5, 7, 2, 7, 2, 3, 5, 3, 2, 5, 2, 3, 11, 2, 31, 13, 2, 5, 2, 3, 3, 2, 5, 3, 2, 5, 23, 2, 5, 17, 7, 2, 5, 7, 2, 3, 3
Offset: 1

Views

Author

Jianing Song, Feb 22 2019

Keywords

Comments

a(n) is the least prime that decomposes in the imaginary quadratic field with discriminant D, D = -A003657(n).
For most n, a(n) is relatively small. There are only 472 n's among [1, 3043] (there are 3043 terms in A003657 below 10000) that violate a(n) < log(A003657(n)).
Also a(n) is the smallest prime p such that the imaginary quadratic field with discriminant D = -A003657(n) can be embedded into the p-adic field Q_p. - Jianing Song, Feb 14 2021

Examples

			Let K = Q[sqrt(-177)] with D = -708 = -A003657(218), we have: 2 and 3 divides 708, (-708/5) = (-708/7) = ... = (-708/29) = -1 and (-708/31) = +1, so 2 and 3 ramify in K, 5, 7, ..., 29 remain inert in K and 31 decomposes in K, so a(218) = 31.
		

Crossrefs

Cf. A003657.
Similar sequences: A232931, A232932 (the least prime that remains inert); A306537, this sequence (the least prime that decomposes); A306541, A306542 (the least prime that decomposes or ramifies).

Programs

  • PARI
    b(D)=forprime(p=2, oo, if(kronecker(D, p)>0, return(p)))
    for(n=1, 300, if(isfundamental(-n), print1(b(-n), ", ")))

A319659 2-rank of the class group of imaginary quadratic field with discriminant -k, k = A003657(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 2, 1, 0, 2, 2
Offset: 1

Views

Author

Jianing Song, Sep 25 2018

Keywords

Comments

The p-rank of a finite abelian group G is equal to log_p(#{x belongs to G : x^p = 1}) where p is a prime number. In this case, G is the class group of Q(sqrt(-k)), and #{x belongs to G : x^p = 1} is the number of genera of Q(sqrt(-k)) (cf. A003640).

Crossrefs

Real discriminant case: A317991.

Programs

  • PARI
    for(n=1, 1000, if(isfundamental(-n), print1(omega(n) - 1, ", ")))

Formula

a(n) = log_2(A003640(n)) = omega(A003657(n)) - 1, where omega(k) is the number of distinct prime divisors of k.

A306542 The least prime q such that Kronecker(D/q) >= 0 where D runs through all negative fundamental discriminants (-A003657).

Original entry on oeis.org

3, 2, 2, 2, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 11, 2, 3, 2, 2, 2, 3, 17, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 5, 2, 2, 2, 2, 3, 2, 41, 2, 2, 2, 3, 2, 2, 7, 2, 3, 2, 3, 5, 2, 2, 3, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 5, 2, 2, 2, 3, 2, 2, 2, 7
Offset: 1

Views

Author

Jianing Song, Feb 22 2019

Keywords

Comments

a(n) is the least prime that either decomposes or ramifies in the imaginary quadratic field with discriminant D, D = -A003657(n).
The quadratic field with discriminant D = -A003657(n) has class number 1 if and only if a(n) >= (1/4)*A003657(n). If the quadratic field with discriminant D = -A003657(n) has class number 3 then a(n)^2 < (1/4)*A003657(n) < a(n)^3.
For most n, a(n) is relatively small. There are only 86 n's among [1, 3043] (there are 3043 terms in A003657 below 10000) that violate a(n) < log(A003657(n)). In fact, if we ignore the first term, the only terms among the first 3043 ones that seem unusually large are a(15) = 11 (with A003657(15) = 43), a(22) = 17 (with A003657(22) = 67), a(52) = 41 (with A003657(52) = 163), a(1147) = 23 (with A003657(1147) = 3763), a(2677) = 23 (with A003657(2677) = 8803) and a(2758) = 23 (with A003657(2758) = 9067).

Examples

			Let K = Q[sqrt(-3763)] with D = -3763 = -A003657(1147), we have: (-3763/2) = (-3763/3) = ... = (-3763/19) = -1 and (-3763/23) = +1, so 2, 3, 5, 7, 11, 13, 17 and 19 remain inert in K and 23 decomposes in K, so a(1147) = 23.
		

Crossrefs

Cf. A003657.
Similar sequences: A232931, A232932 (the least prime that remains inert); A306537, A306538 (the least prime that decomposes); A306541, this sequence (the least prime that decomposes or ramifies).

Programs

  • PARI
    b(D)=forprime(p=2, oo, if(kronecker(D, p)>=0, return(p)))
    for(n=1, 300, if(isfundamental(-n), print1(b(-n), ", ")))

A136403 Absolute values of negative fundamental discriminants (A003657) that are not 3 mod 4 (A002145).

Original entry on oeis.org

4, 8, 15, 20, 24, 35, 39, 40, 51, 52, 55, 56, 68
Offset: 1

Views

Author

Paul Muljadi, Mar 30 2008

Keywords

Comments

All terms are composite numbers (A002808).

Crossrefs

A002145 Primes of the form 4*k + 3.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563, 571
Offset: 1

Views

Author

Keywords

Comments

Or, odd primes p such that -1 is not a square mod p, i.e., the Legendre symbol (-1/p) = -1. [LeVeque I, p. 66]. - N. J. A. Sloane, Jun 28 2008
Primes which are not the sum of two squares, see the comment in A022544. - Artur Jasinski, Nov 15 2006
Natural primes which are also Gaussian primes. (It is a common error to refer to this sequence as "the Gaussian primes".)
Inert rational primes in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
Numbers n such that the product of coefficients of (2n)-th cyclotomic polynomial equals -1. - Benoit Cloitre, Oct 22 2002
For p and q both belonging to the sequence, exactly one of the congruences x^2 = p (mod q), x^2 = q (mod p) is solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Also primes p that divide L((p-1)/2) or L((p+1)/2), where L(n) = A000032(n), the Lucas numbers. Union of A122869 and A122870. - Alexander Adamchuk, Sep 16 2006
Also odd primes p that divide ((p-1)!! + 1) or ((p-2)!! + 1). - Alexander Adamchuk, Nov 30 2006
Also odd primes p that divide ((p-1)!! - 1) or ((p-2)!! - 1). - Alexander Adamchuk, Apr 18 2007
This sequence is a proper subset of the set of the absolute values of negative fundamental discriminants (A003657). - Paul Muljadi, Mar 29 2008
Bernard Frénicle de Bessy discovered that such primes cannot be the hypotenuse of a Pythagorean triangle in opposition to primes of the form 4*n+1 (see A002144). - after Paul Curtz, Sep 10 2008
A079261(a(n)) = 1; complement of A145395. - Reinhard Zumkeller, Oct 12 2008
Subsequence of A007970. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = -1.
Primes p such that p XOR 2 = p - 2. Brad Clardy, Oct 25 2011 (Misleading in the sense that this is a formula for the super-sequence A004767. - R. J. Mathar, Jul 28 2014)
It appears that each term of A004767 is the mean of two terms of this subsequence of primes therein; cf. A245203. - M. F. Hasler, Jul 13 2014
Numbers n > 2 such that ((n-2)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 24 2016
Odd numbers n > 1 such that ((n-1)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 25 2016
Primes p such that (p-2)!! == (p-3)!! (mod p). - Thomas Ordowski, Jul 28 2016
See Granville and Martin for a discussion of the relative numbers of primes of the form 4k+1 and 4k+3. - Editors, May 01 2017
Sometimes referred to as Blum primes for their connection to A016105 and the Blum Blum Shub generator. - Charles R Greathouse IV, Jun 14 2018
Conjecture: a(n) for n > 4 can be written as a sum of 3 primes of the form 4k+1, which would imply that primes of the form 4k+3 >= 23 can be decomposed into a sum of 6 nonzero squares. - Thomas Scheuerle, Feb 09 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 146-147.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 252.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 66.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Apart from initial term, same as A045326.
Cf. A016105.
Cf. A004614 (multiplicative closure).

Programs

  • Haskell
    a002145 n = a002145_list !! (n-1)
    a002145_list = filter ((== 1) . a010051) [3, 7 ..]
    -- Reinhard Zumkeller, Aug 02 2015, Sep 23 2011
    
  • Magma
    [4*n+3 : n in [0..142] | IsPrime(4*n+3)]; // Arkadiusz Wesolowski, Nov 15 2013
    
  • Maple
    A002145 := proc(n)
        option remember;
        if n = 1 then
            3;
        else
            a := nextprime(procname(n-1)) ;
            while a mod 4 <>  3 do
                a := nextprime(a) ;
            end do;
            return a;
        end if;
    end proc:
    seq(A002145(n),n=1..20) ; # R. J. Mathar, Dec 08 2011
  • Mathematica
    Select[4Range[150] - 1, PrimeQ] (* Alonso del Arte, Dec 19 2013 *)
    Select[ Prime@ Range[2, 110], Length@ PowersRepresentations[#^2, 2, 2] == 1 &] (* or *)
    Select[ Prime@ Range[2, 110], JacobiSymbol[-1, #] == -1 &] (* Robert G. Wilson v, May 11 2014 *)
  • PARI
    forprime(p=2,1e3,if(p%4==3,print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • Sage
    def A002145_list(n): return [p for p in prime_range(1, n + 1) if p % 4 == 3]  # Peter Luschny, Jul 29 2014

Formula

Remove from A000040 terms that are in A002313.
Intersection of A000040 and A004767. - Alonso del Arte, Apr 22 2014
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A243379.
Product_{k>=1} (1 + 1/a(k)^2) = A243381.
Product_{k>=1} (1 - 1/a(k)^3) = A334427.
Product_{k>=1} (1 + 1/a(k)^3) = A334426.
Product_{k>=1} (1 - 1/a(k)^4) = A334448.
Product_{k>=1} (1 + 1/a(k)^4) = A334447.
Product_{k>=1} (1 - 1/a(k)^5) = A334452.
Product_{k>=1} (1 + 1/a(k)^5) = A334451. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/a(k)) / (1 + 1/A002144(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/a(k)) / (1 - 1/A002144(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log(2 * (2^(n*s) - 1) * (n*s - 1)! * zeta(n*s) / (Pi^(n*s) * abs(EulerE(n*s - 1))))/n, s >= 3 odd number. - Dimitris Valianatos, May 20 2020

Extensions

More terms from James Sellers, Apr 21 2000
Showing 1-10 of 24 results. Next