4, 9, 8, 0, 9, 4, 7, 3, 3, 9, 6, 1, 4, 9, 3, 4, 1, 5, 0, 7, 9, 1, 3, 2, 5, 3, 2, 5, 8, 8, 0, 7, 7, 5, 2, 8, 1, 2, 3, 7, 7, 3, 2, 6, 9, 6, 5, 8, 5, 2, 0, 4, 7, 9, 5, 4, 6, 2, 3, 3, 1, 2, 7, 1, 8, 6, 7, 3, 3, 2, 6, 3, 8, 1, 9, 6, 8, 0, 0, 3, 8, 1, 5, 2, 0, 9, 0, 4, 7, 7, 4, 9, 0, 0, 6, 1, 7, 6, 1, 6, 2, 1, 2
Offset: 1
A249273
Decimal expansion of a constant associated with the set of all complex nonprincipal Dirichlet characters.
Original entry on oeis.org
2, 5, 3, 5, 0, 5, 4, 1, 8, 0, 3, 6, 0, 4, 3, 8, 8, 3, 0, 1, 6, 5, 5, 3, 0, 0, 0, 7, 1, 8, 5, 9, 0, 8, 3, 5, 0, 8, 6, 1, 1, 7, 8, 0, 1, 3, 8, 5, 3, 7, 0, 1, 6, 4, 5, 3, 7, 7, 5, 1, 2, 6, 4, 9, 4, 3, 6, 4, 1, 4, 7, 5, 3, 8, 2, 9, 6, 7, 8, 5, 4, 7, 0, 1, 7, 0, 3, 3, 6, 6, 5, 1, 7, 9, 1, 0, 9, 0, 3, 4, 2, 4, 5
Offset: 1
2.5350541803604388301655300071859083508611780138537...
-
digits = 103; Clear[s]; s[m_] := s[m] = Sum[Prime[k]^2/Product[Prime[j] + 1, {j, 1, k}] , {k, 1, m}] // N[#, digits + 100]&; s[10]; s[m = 20]; While[RealDigits[s[m]] != RealDigits[s[m/2]], Print[m, " ", N[s[m]]]; m = 2*m]; RealDigits[s[m], 10, digits] // First
A249274
Decimal expansion of a constant associated with the set of all complex primitive Dirichlet characters.
Original entry on oeis.org
2, 1, 5, 1, 4, 3, 5, 1, 0, 5, 6, 8, 6, 1, 4, 6, 5, 4, 8, 6, 2, 4, 2, 8, 1, 0, 0, 5, 0, 9, 6, 5, 8, 4, 0, 5, 3, 2, 6, 3, 3, 0, 4, 5, 7, 1, 8, 5, 8, 4, 5, 7, 8, 9, 5, 8, 8, 9, 7, 3, 3, 3, 9, 1, 0, 7, 8, 1, 8, 4, 2, 8, 7, 3, 2, 5, 7, 4, 6, 4, 5, 2, 0, 7, 1, 8, 4, 6, 3, 0, 4, 2, 4, 4, 6, 9, 1, 7, 9, 3, 2
Offset: 1
2.1514351056861465486242810050965840532633...
- Steven R. Finch, Average least nonresidues, December 4, 2013. [Cached copy, with permission of the author]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 251.
- G. Martin and P. Pollack, The average least character non-residue and further variations on a theme of Erdős, J. London Math. Soc. 87 (2013) 22-42.
-
digits = 101; Clear[s, P]; P[j_] := P[j] = Product[(Prime[k]^2 - Prime[k] - 1)/((Prime[k] + 1)^2*(Prime[k] - 1)), {k, 1, j - 1}] // N[#, digits + 100]&; s[m_] := s[m] = Sum[Prime[j]^4/((Prime[j] + 1)^2*(Prime[j] - 1))*P[j], {j, 1, m}]; s[10]; s[m = 20]; While[ RealDigits[s[m]] != RealDigits[s[m/2]], Print[m, " ", N[s[m]]]; m = 2*m]; RealDigits[s[m], 10, digits] // First
Showing 1-8 of 8 results.
Comments