cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A104141 Decimal expansion of 3/Pi^2.

Original entry on oeis.org

3, 0, 3, 9, 6, 3, 5, 5, 0, 9, 2, 7, 0, 1, 3, 3, 1, 4, 3, 3, 1, 6, 3, 8, 3, 8, 9, 6, 2, 9, 1, 8, 2, 9, 1, 6, 7, 1, 3, 0, 7, 6, 3, 2, 4, 0, 1, 6, 7, 3, 9, 6, 4, 6, 5, 3, 6, 8, 2, 7, 0, 9, 5, 6, 8, 2, 5, 1, 9, 3, 6, 2, 8, 8, 6, 7, 0, 6, 3, 2, 3, 5, 7, 3, 6, 2, 7, 8, 2, 1, 7, 7, 6, 8, 6, 5, 5, 1, 2, 8
Offset: 0

Views

Author

Lekraj Beedassy, Mar 07 2005

Keywords

Comments

3/Pi^2 is the limit of (Sum_{k=1..n} phi(k))/n^2, where phi(k) is Euler's totient A000010(k), i.e., of A002088(n)/A000290(n) as n tends to infinity.
The previous comment in the context of Farey series means that the length of the n-th Farey series can be approximated by multiplying this constant by n^2, "and that the approximation gets proportionally better as n gets larger", according to Conway and Guy. - Alonso del Arte, May 28 2011
The asymptotic density of the sequences of squarefree numbers with even number of prime factors (A030229), odd number of prime factors (A030059), and coprime to 6 (A276378). - Amiram Eldar, May 22 2020

Examples

			3/Pi^2 = 0.303963550927013314331638389629...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, p. 156.
  • L. E. Dickson, History of the Theory of Numbers, Vol. I pp. 126 Chelsea NY 1966.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 184.

Crossrefs

Programs

Formula

Equals Sum_{n>=1} 1/A039956(n)^2. - Amiram Eldar, May 22 2020
From Terry D. Grant, Oct 31 2020: (Start)
Equals (-1)*zeta(0)/zeta(2).
Equals 1/(zeta(2)/2).
Equals 1/A195055.
Equals (1/2)*Sum_{k>=1} mu(k)/k^2. (End)
From Hugo Pfoertner, Apr 23 2024: (Start)
Equals A059956/2.
Equals A082020/5. (End)

Extensions

More terms from Ryan Propper, Aug 04 2005

A088245 Decimal expansion of 9/(2*Pi^2).

Original entry on oeis.org

4, 5, 5, 9, 4, 5, 3, 2, 6, 3, 9, 0, 5, 1, 9, 9, 7, 1, 4, 9, 7, 4, 5, 7, 5, 8, 4, 4, 4, 3, 7, 7, 4, 3, 7, 5, 0, 6, 9, 6, 1, 4, 4, 8, 6, 0, 2, 5, 1, 0, 9, 4, 6, 9, 8, 0, 5, 2, 4, 0, 6, 4, 3, 5, 2, 3, 7, 7, 9, 0, 4, 4, 3, 3, 0, 0, 5, 9, 4, 8, 5, 3, 6, 0, 4, 4, 1, 7, 3, 2, 6, 6, 5, 2, 9, 8, 2, 6, 9, 2, 6, 1
Offset: 0

Views

Author

Eric W. Weisstein, Sep 25 2003

Keywords

Comments

The asymptotic density of squarefree numbers not divisible by 3 (A261034). - Amiram Eldar, May 22 2020

Examples

			0.455945326390519971497457584443774375...
		

References

  • See the Hardy reference given under A030059, eq. (4.9.4), p. 64, from the corrected formula on p. 65 for s=2. - Wolfdieter Lang, Oct 18 2016

Crossrefs

Programs

Formula

Equals Sum_{n > 0} 1/A030059(n)^2 (the sum of reciprocals of squarefree numbers with an odd number of prime factors). Convergence is very slow. - Michel Lagneau, Oct 23 2015

A372962 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( n/gcd(x_1, x_2, x_3, n) )^2.

Original entry on oeis.org

1, 29, 235, 925, 3101, 6815, 16759, 29597, 57097, 89929, 160931, 217375, 371125, 486011, 728735, 947101, 1419569, 1655813, 2475739, 2868425, 3938365, 4666999, 6435815, 6955295, 9690601, 10762625, 13874563, 15502075, 20510309, 21133315, 28628191, 30307229, 37818785
Offset: 1

Views

Author

Seiichi Manyama, May 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(5*e+5) - p^(5*e+2) + p^2 - 1)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^2*sigma(d, 5));

Formula

a(n) = Sum_{d|n} mu(n/d) * (n/d)^2 * sigma_5(d).
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = (p^(5*e+5) - p^(5*e+2) + p^2 - 1)/(p^5-1).
Dirichlet g.f.: zeta(s)*zeta(s-5)/zeta(s-2).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(6)/zeta(4) = 2*Pi^2/21 = 0.939962323... (1/A088246). (End)
a(n) = Sum_{d|n} phi(n/d) * (n/d)^4 * sigma_4(d^2)/sigma_2(d^2). - Seiichi Manyama, May 24 2024
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( gcd(x_1, n)/gcd(x_1, x_2, x_3, n) )^3. - Seiichi Manyama, May 25 2024

A372927 a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^5.

Original entry on oeis.org

1, 35, 251, 1132, 3149, 8785, 16855, 36272, 61065, 110215, 161171, 284132, 371461, 589925, 790399, 1160896, 1420145, 2137275, 2476459, 3564668, 4230605, 5640985, 6436871, 9104272, 9841225, 13001135, 14839443, 19079860, 20511989, 27663965, 28630111, 37149440, 40453921
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e-2) * (p^2 * (p^(3*e+3)-1) - p^(3*e) + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^2*sigma(d, 3));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} gcd(x_1, x_2, x_3, x_4, x_5, n)^2.
a(n) = Sum_{d|n} mu(n/d) * d^2 * sigma_3(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(2*e-2) * (p^2 * (p^(3*e+3)-1) - p^(3*e) + 1)/(p^3-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-5)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(4)/zeta(6) = 21/(2*Pi^2) = 1.0638724... (A088246). (End)

A383647 Decimal expansion of 15/(2*Pi^4).

Original entry on oeis.org

0, 7, 6, 9, 9, 4, 8, 6, 6, 9, 1, 0, 1, 3, 2, 5, 1, 3, 9, 1, 8, 6, 4, 5, 8, 7, 4, 5, 0, 3, 3, 9, 0, 2, 0, 6, 0, 6, 3, 7, 0, 8, 5, 1, 3, 9, 0, 2, 2, 8, 6, 9, 7, 0, 3, 8, 6, 2, 6, 0, 2, 6, 6, 0, 3, 9, 8, 0, 2, 4, 7, 0, 0, 6, 6, 6, 3, 9, 4, 0, 1, 8, 6, 8, 0, 4, 2, 8, 6, 4, 4, 7, 1, 4, 6, 7, 8, 6, 7, 9, 2
Offset: 0

Views

Author

Stefano Spezia, May 03 2025

Keywords

Examples

			0.07699486691013251391864587450339020606370851390...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 64.

Crossrefs

Programs

  • Mathematica
    Join[{0},RealDigits[15/(2Pi^4),10,100][[1]]]

Formula

Equals Sum_{n > 0} 1/A030059(n)^4.
Equals 10/A151927. - Hugo Pfoertner, May 03 2025
Showing 1-5 of 5 results.