cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A039956 Even squarefree numbers.

Original entry on oeis.org

2, 6, 10, 14, 22, 26, 30, 34, 38, 42, 46, 58, 62, 66, 70, 74, 78, 82, 86, 94, 102, 106, 110, 114, 118, 122, 130, 134, 138, 142, 146, 154, 158, 166, 170, 174, 178, 182, 186, 190, 194, 202, 206, 210, 214, 218, 222, 226, 230, 238, 246, 254, 258, 262
Offset: 1

Views

Author

Keywords

Comments

Sum of even divisors = 2 * the sum of odd divisors. - Amarnath Murthy, Sep 07 2002
From Daniel Forgues, May 27 2009: (Start)
a(n) = n * (3/1) * zeta(2) + O(n^(1/2)) = n * (3/1) * (Pi^2 / 6) + O(n^(1/2)).
For any prime p_i, the n-th squarefree number even to p_i (divisible by p_i) is:
n * ((p_i + 1)/1) * zeta(2) + O(n^(1/2)) = n * ((p_i + 1)/1) * (Pi^2 / 6) + O(n^(1/2)).
For any prime p_i, there are as many squarefree numbers having p_i as a factor as squarefree numbers not having p_i as a factor amongst all the squarefree numbers (one-to-one correspondence, both cardinality aleph_0).
E.g., there are as many even squarefree numbers as there are odd squarefree numbers.
For any prime p_i, the density of squarefree numbers having p_i as a factor is 1/p_i of the density of squarefree numbers not having p_i as a factor.
E.g., the density of even squarefree numbers is 1/p_i = 1/2 of the density of odd squarefree numbers (which means that 1/(p_i + 1) = 1/3 of the squarefree numbers are even and p_i/(p_i + 1) = 2/3 are odd) and as a consequence the n-th even squarefree number is very nearly p_i = 2 times the n-th odd squarefree number (which means that the n-th even squarefree number is very nearly (p_i + 1) = 3 times the n-th squarefree number while the n-th odd squarefree number is very nearly (p_i + 1)/ p_i = 3/2 the n-th squarefree number).
(End)
Apart from first term, these are the tau2-atoms as defined in [Anderson, Frazier] and [Lanterman]. - Michel Marcus, May 15 2019

References

  • Richard A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.

Crossrefs

Programs

  • Haskell
    a039956 n = a039956_list !! (n-1)
    a039956_list = filter even a005117_list  -- Reinhard Zumkeller, Aug 15 2011
    
  • Magma
    [n: n in [2..262 by 2] | IsSquarefree(n)];  // Bruno Berselli, Mar 03 2011
    
  • Maple
    select(numtheory:-issqrfree,[seq(i,i=2..1000,4)]); # Robert Israel, Dec 23 2015
  • Mathematica
    Select[Range[2,270,2],SquareFreeQ] (* Harvey P. Dale, Jul 23 2011 *)
  • PARI
    is(n)=n%4==2 && issquarefree(n) \\ Charles R Greathouse IV, Sep 13 2013

Formula

Numbers k such that A092673(k) = +- 2. - Jon Perry, Mar 02 2004
Sum_{n>=1} 1/a(n)^s = zeta(s)/((1+2^s)*zeta(2*s)). - Enrique Pérez Herrero, Sep 15 2012 [corrected by Amiram Eldar, Sep 26 2023]
a(n) = 2*A056911(n). - Robert Israel, Dec 23 2015
a(n) = 2*(1+2*A264387(n)), n >= 1. - Wolfdieter Lang, Dec 24 2015

A003658 Fundamental discriminants of real quadratic fields; indices of primitive positive Dirichlet L-series.

Original entry on oeis.org

1, 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 53, 56, 57, 60, 61, 65, 69, 73, 76, 77, 85, 88, 89, 92, 93, 97, 101, 104, 105, 109, 113, 120, 124, 129, 133, 136, 137, 140, 141, 145, 149, 152, 156, 157, 161, 165, 168, 172, 173, 177, 181, 184, 185, 188, 193, 197
Offset: 1

Views

Author

Keywords

Comments

All the prime numbers in the set of positive fundamental discriminants are Pythagorean primes (A002144). - Paul Muljadi, Mar 28 2008
Record numbers of prime divisors (with multiplicity) are 1, 5, and 4*A002110(n) for n > 0. - Charles R Greathouse IV, Jan 21 2022

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.
  • M. Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, page 432.
  • Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Union of A039955 and 4*A230375.

Programs

  • Mathematica
    fundamentalDiscriminantQ[d_] := Module[{m, mod = Mod[d, 4]}, If[mod > 1, Return[False]]; If[mod == 1, Return[SquareFreeQ[d] && d != 1]]; m = d/4; Return[SquareFreeQ[m] && Mod[m, 4] > 1]; ]; Join[{1}, Select[Range[200], fundamentalDiscriminantQ]] (* Jean-François Alcover, Nov 02 2011, after Eric W. Weisstein *)
    Select[Range[200], NumberFieldDiscriminant@Sqrt[#] == # &]  (* Alonso del Arte, Apr 02 2014, based on Arkadiusz Wesolowski's program for A094612 *)
    max = 200; Drop[Select[Union[Table[Abs[MoebiusMu[n]] * n * 4^Boole[Not[Mod[n, 4] == 1]], {n, max}]], # < max &], 1] (* Alonso del Arte, Apr 02 2014 *)
  • PARI
    v=[]; for(n=1,500,if(isfundamental(n),v=concat(v,n))); v
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=1,lim\4, listput(v, if(n[1]%4==1, n[1], 4*n[1]))); forsquarefree(n=lim\4+1, lim\1, if(n[1]%4==1, listput(v,n[1]))); Set(v) \\ Charles R Greathouse IV, Jan 21 2022
    
  • Sage
    def is_fundamental(d):
        r = d % 4
        if r > 1 : return False
        if r == 1: return (d != 1) and is_squarefree(d)
        q = d // 4
        return is_squarefree(q) and (q % 4 > 1)
    [1] + [n for n in (1..200) if is_fundamental(n)] # Peter Luschny, Oct 15 2018

Formula

Squarefree numbers (multiplied by 4 if not == 1 (mod 4)).
a(n) ~ (Pi^2/3)*n. There are (3/Pi^2)*x + O(sqrt(x)) terms up to x. - Charles R Greathouse IV, Jan 21 2022

Extensions

More terms from Eric W. Weisstein and Jason Earls, Jun 19 2001

A039957 Squarefree numbers congruent to 3 mod 4.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 31, 35, 39, 43, 47, 51, 55, 59, 67, 71, 79, 83, 87, 91, 95, 103, 107, 111, 115, 119, 123, 127, 131, 139, 143, 151, 155, 159, 163, 167, 179, 183, 187, 191, 195, 199, 203, 211, 215, 219, 223, 227, 231, 235, 239, 247, 251, 255
Offset: 1

Views

Author

Keywords

Comments

Negatives of odd fundamental discriminants D := b^2-4*a*c<0 of definite integer binary quadratic forms F=a*x^2+b*x*y+c*y^2. See Buell reference pp. 224-230. See 4*A089269 = A191483 for the even case and A003657 for combined even and odd numbers. - Wolfdieter Lang, Nov 07 2003
The asymptotic density of this sequence is 2/Pi^2 = 0.202642... (A185197). - Amiram Eldar, Feb 10 2021

References

  • Richard A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.
  • Duncan A. Buell, Binary Quadratic Forms, Springer-Verlag, NY, 1989.

Crossrefs

Programs

  • Haskell
    a039957 n = a039957_list !! (n-1)
    a039957_list = filter ((== 3) . (`mod` 4)) a005117_list
    -- Reinhard Zumkeller, Aug 15 2011
    
  • Magma
    [4*n+3: n in [0..63] | IsSquarefree(4*n+3)];  // Bruno Berselli, Mar 04 2011
    
  • Mathematica
    fQ[n_] := SquareFreeQ[n] && Mod[n, 4] == 3; Select[ Range@ 258, fQ] (* Robert G. Wilson v, Mar 02 2011 *)
    Select[Range[3,300,4],SquareFreeQ] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    is(n)=n%4==3 && issquarefree(n) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Offset corrected

A230375 Squarefree numbers congruent to 2 or 3 mod 4.

Original entry on oeis.org

2, 3, 6, 7, 10, 11, 14, 15, 19, 22, 23, 26, 30, 31, 34, 35, 38, 39, 42, 43, 46, 47, 51, 55, 58, 59, 62, 66, 67, 70, 71, 74, 78, 79, 82, 83, 86, 87, 91, 94, 95, 102, 103, 106, 107, 110, 111, 114, 115, 118, 119, 122, 123, 127, 130, 131, 134, 138, 139, 142, 143
Offset: 1

Views

Author

Colin Barker, Oct 17 2013

Keywords

Comments

Also numbers such that the discriminant of the quadratic field Q(sqrt(n)) equals 4n. - Michel Marcus, Nov 26 2013
The asymptotic density of this sequence is 4/Pi^2 (A185199). - Amiram Eldar, Feb 23 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[200],SquareFreeQ[#]&&MemberQ[{2,3},Mod[#,4]]&] (* Harvey P. Dale, Feb 04 2015 *)
  • PARI
    s=[]; for(n=1, 200, if(issquarefree(n) && n%4!=1, s=concat(s, n))); s

A053370 Write fundamental unit for real quadratic field of discriminant n as x + y*omega; sequence gives values of x for n == 1 mod 4.

Original entry on oeis.org

0, 1, 3, 2, 2, 19, 5, 27, 3, 131, 17, 7, 11, 943, 4, 4, 447, 13, 5035, 9, 37, 118, 703, 15371, 79, 1595, 87, 11, 28, 98, 10847, 6, 6, 57731, 604, 63, 1637147, 13, 478763, 20, 43331, 34, 3583111, 7, 7, 21639, 36, 66436843, 8011739, 872, 15, 5699, 77
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2000

Keywords

Comments

Entries are indexed by values of n from A039955.

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.

Crossrefs

A053373 Write fundamental unit for real quadratic field of discriminant n as x + y*omega; sequence gives values of y for n == 1 (mod 4).

Original entry on oeis.org

1, 1, 2, 1, 1, 8, 2, 10, 1, 40, 5, 2, 3, 250, 1, 1, 106, 3, 1138, 2, 8, 25, 146, 2968, 15, 298, 16, 2, 5, 17, 1856, 1, 1, 9384, 97, 10, 253970, 2, 72664, 3, 6440, 5, 521904, 1, 1, 3034, 5, 9148450, 1084152, 117, 2, 746, 10, 88, 157, 126890, 1, 1, 1311, 56, 287
Offset: 1

Views

Author

N. J. A. Sloane, Jan 06 2000

Keywords

Comments

Entries are indexed by values of n from A039955.
Subsequence of A077058 excluding terms for which A077425(n) is not squarefree. - Max Alekseyev, Dec 12 2012

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.

Crossrefs

Programs

  • Mathematica
    2*NumberFieldFundamentalUnits[ Sqrt[#] ][[1, 2, 2]] & /@ Select[ Range[5, 309, 4], SquareFreeQ ]  (* Jean-François Alcover, Jul 09 2013 *)
  • PARI
    forstep(n=5,1000,4, if(!issquarefree(n),next); print1( 2*polcoeff(lift(bnfinit(x^2-n).fu[1]),1), ", " )) /* Max Alekseyev */

A283395 Squarefree numbers m congruent to 1 modulo 4 such that the fundamental unit of the field Q(sqrt(m)) has the form x+y*sqrt(m) with x, y integers.

Original entry on oeis.org

17, 33, 37, 41, 57, 65, 73, 89, 97, 101, 105, 113, 129, 137, 141, 145, 161, 177, 185, 193, 197, 201, 209, 217, 233, 241, 249, 257, 265, 269, 273, 281, 305, 313, 321, 329, 337, 345, 349, 353, 373, 377, 381, 385, 389, 393, 401, 409, 417, 433, 449, 457, 465, 473, 481, 485, 489, 497, 505, 521, 537, 545, 553, 557, 561, 569, 573
Offset: 1

Views

Author

Emmanuel Vantieghem, Mar 07 2017

Keywords

Comments

Squarefree integers m congruent to 1 modulo 4 such that the minimal solution of the Pell equation x^2 - d*y^2 = +-4 has both x and y even.
The sequence contains the squarefree numbers congruent to 5 modulo 8 that are not in A107997.
This sequence union A107997 = A039955.
This sequence contains all numbers of the form 4*k^2+1 (k > 1) that are squarefree.

Examples

			33 is in the sequence since the fundamental unit of the field Q(sqrt(33)) is 23+4*sqrt(33).
53 is not in the sequence since the fundamental unit of the field Q(sqrt(53)) is 3+omega, where omega = (1+sqrt(53))/2.
		

References

  • Z. I. Borevich and I. R. Shafarevich. Number Theory. Academic Press. 1966.

Crossrefs

Showing 1-7 of 7 results.