cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003658 Fundamental discriminants of real quadratic fields; indices of primitive positive Dirichlet L-series.

Original entry on oeis.org

1, 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 53, 56, 57, 60, 61, 65, 69, 73, 76, 77, 85, 88, 89, 92, 93, 97, 101, 104, 105, 109, 113, 120, 124, 129, 133, 136, 137, 140, 141, 145, 149, 152, 156, 157, 161, 165, 168, 172, 173, 177, 181, 184, 185, 188, 193, 197
Offset: 1

Views

Author

Keywords

Comments

All the prime numbers in the set of positive fundamental discriminants are Pythagorean primes (A002144). - Paul Muljadi, Mar 28 2008
Record numbers of prime divisors (with multiplicity) are 1, 5, and 4*A002110(n) for n > 0. - Charles R Greathouse IV, Jan 21 2022

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.
  • M. Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, page 432.
  • Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Union of A039955 and 4*A230375.

Programs

  • Mathematica
    fundamentalDiscriminantQ[d_] := Module[{m, mod = Mod[d, 4]}, If[mod > 1, Return[False]]; If[mod == 1, Return[SquareFreeQ[d] && d != 1]]; m = d/4; Return[SquareFreeQ[m] && Mod[m, 4] > 1]; ]; Join[{1}, Select[Range[200], fundamentalDiscriminantQ]] (* Jean-François Alcover, Nov 02 2011, after Eric W. Weisstein *)
    Select[Range[200], NumberFieldDiscriminant@Sqrt[#] == # &]  (* Alonso del Arte, Apr 02 2014, based on Arkadiusz Wesolowski's program for A094612 *)
    max = 200; Drop[Select[Union[Table[Abs[MoebiusMu[n]] * n * 4^Boole[Not[Mod[n, 4] == 1]], {n, max}]], # < max &], 1] (* Alonso del Arte, Apr 02 2014 *)
  • PARI
    v=[]; for(n=1,500,if(isfundamental(n),v=concat(v,n))); v
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=1,lim\4, listput(v, if(n[1]%4==1, n[1], 4*n[1]))); forsquarefree(n=lim\4+1, lim\1, if(n[1]%4==1, listput(v,n[1]))); Set(v) \\ Charles R Greathouse IV, Jan 21 2022
    
  • Sage
    def is_fundamental(d):
        r = d % 4
        if r > 1 : return False
        if r == 1: return (d != 1) and is_squarefree(d)
        q = d // 4
        return is_squarefree(q) and (q % 4 > 1)
    [1] + [n for n in (1..200) if is_fundamental(n)] # Peter Luschny, Oct 15 2018

Formula

Squarefree numbers (multiplied by 4 if not == 1 (mod 4)).
a(n) ~ (Pi^2/3)*n. There are (3/Pi^2)*x + O(sqrt(x)) terms up to x. - Charles R Greathouse IV, Jan 21 2022

Extensions

More terms from Eric W. Weisstein and Jason Earls, Jun 19 2001

A230376 The left Aurifeuillian factor of k^k - 1 for k congruent to 1 (mod 4) and squarefree.

Original entry on oeis.org

11, 1803647, 2699538733, 30778903, 112663560435723374699, 554945667652531, 6243610407478181159725577611, 67643278270835231300426724641533, 253382315888712050791030544452181354268272663, 14710826638296122001733445931451
Offset: 1

Views

Author

Colin Barker, Oct 17 2013

Keywords

Comments

The values of k are given by A005117, except for the leading 1.
Named after the French mathematician Léon-François-Antoine Aurifeuille (1822-1882). - Bernard Schott, Apr 13 2022

Examples

			1803647 is in the sequence because it is an Aurifeuillian factor of 13^13-1.
		

Crossrefs

A230377 The left Aurifeuillian factor of k^k + 1 for k congruent to 0, 2 or 3 (mod 4) and squarefree.

Original entry on oeis.org

1, 1, 13, 113, 3541, 58367, 2826601, 19231, 113631466919, 9617835527609, 348275601426959, 35522826680397941, 241498479121, 8403855868042458448127, 1161044975606998832441701, 1272844589592126671, 10128165505710094110937686497, 4612290807753604561
Offset: 1

Views

Author

Colin Barker, Oct 17 2013

Keywords

Comments

The values of k are given by A230375.
Named after the French mathematician Léon-François-Antoine Aurifeuille (1822-1882). - Bernard Schott, Apr 25 2022

Examples

			58367 is in the sequence because it is an Aurifeuillian factor of 11^11+1.
		

Crossrefs

A230378 The right Aurifeuillian factor of k^k - 1 for k congruent to 1 (mod 4) and squarefree.

Original entry on oeis.org

71, 13993643, 19152352117, 227633407, 813955076015309926319, 4098986195943739, 46959719470144429555105032871, 491873569944394295636860313807677, 1848593595048531176470116001230356265643249547, 108685909290746311448943506365699
Offset: 1

Views

Author

Colin Barker, Oct 17 2013

Keywords

Comments

The values of k are given by A005117, except for the leading 1.

Examples

			13993643 is in the sequence because it is an Aurifeuillian factor of 13^13-1.
		

Crossrefs

A230379 The right Aurifeuillian factor of k^k + 1 for k congruent to 0, 2 or 3 (mod 4) and squarefree.

Original entry on oeis.org

5, 7, 97, 911, 27961, 407353, 19955461, 142111, 870542161121, 73194743542229, 2498077661567473, 255982845098719961, 1784464680181, 63472256064447557254913, 8751868368432861971645641, 9227671631659104191, 73515350937824503550370503117, 34089603477374212561
Offset: 1

Views

Author

Colin Barker, Oct 17 2013

Keywords

Comments

The values of k are given by A230375.

Examples

			407353 is in the sequence because it is an Aurifeuillian factor of 11^11+1.
		

A370411 Square array T(n, k) = denominator( zeta_r(2*n) * sqrt(A003658(k + 2)) / Pi^(4*n) ), read by antidiagonals, where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).

Original entry on oeis.org

1, 75, 1, 16875, 24, 1, 221484375, 34560, 18, 1, 116279296875, 116121600, 58320, 39, 1, 12950606689453125, 780337152000, 440899200, 296595, 51, 1, 4861333986053466796875, 8899589151129600, 6666395904000, 68420017575, 663255, 63, 1, 677114376628875732421875
Offset: 0

Views

Author

Thomas Scheuerle, Feb 22 2024

Keywords

Examples

			The array begins:
           1,            1,             1,              1,                 1
          75,           24,            18,             39,                51
       16875,        34560,         58320,         296595,            663255
   221484375,    116121600,     440899200,    68420017575,       20126472975
116279296875, 780337152000, 6666395904000, 93393323989875, 10382542981248375
		

Crossrefs

Cf. A370412 (numerators).
Cf. A002432 (denominators zeta(2*n)/Pi^(2*n)).
Cf. A046988 (numerators zeta(2*n)/Pi^(2*n)).
Coefficients of Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • PARI
    \p 700
    row(n) = {v=[]; for(k=2, 30, if(isfundamental(k), v=concat(v, denominator(bestappr(sqrt(k)*lfun(x^2-(k%2)*x-floor(k/4), 2*n)/Pi^(4*n)))))); v}
    z(n,d) = if(n == 0, 0,(1/(-2*n))*bernfrac(2*n)*d^(2*n-1)*sum(k=1,d-1, kronecker(d, k)*subst(bernpol(2*n),x,k/d)*(1/(-2*n))))
    row(n) = {v=[]; for(k=2, 100, if(isfundamental(k), v=concat(v, denominator((2^(n*4)*n^2*z(n,k))/((2*n)!^2 * (k^(2*n-1))))))); v} \\ more accuracy here
    
  • Sage
    # Only suitable for small n and k
    def T(n, k):
        discs = [fundamental_discriminant(i) for i in range(1, 4*k+10)]
        D = sorted(list(set(discs)))[k+1]
        zetaK = QuadraticField(D).zeta_function(1000)
        val = (zetaK(2*n)*sqrt(D)/(pi^(4*n))).n(1000).nearby_rational(2^-900)
        return val.denominator() # Robin Visser, Mar 19 2024

Formula

T(n, k) = denominator( 2^(n*4) * n^2 * zeta_r(1 - 2*n) /((2*n)!^2 * A003658(k + 2)^(2*n - 1)) ), where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).
T(n, 0) = denominator((5^(-2*n)*(zeta(2*n, 1/5) - zeta(2*n, 2/5) - zeta(2*n, 3/5) + zeta(2*n, 4/5) ))*zeta(2*n)*sqrt(5)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according A080891.
T(n, 1) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000464(n+1) /((2*n)!^2 * 8^(2*n - 1)) ).
T(n, 2) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000191(n+1) /((2*n)!^2 * 12^(2*n - 1)) ).
T(n, 3) = denominator((13^(-2*n)*(zeta(2*n, 1/13) - zeta(2*n, 2/13) + zeta(2*n, 3/13) + zeta(2*n, 4/13) - zeta(2*n, 5/13) - zeta(2*n, 6/13) - zeta(2*n, 7/13) - zeta(2*n, 8/13) + zeta(2*n, 9/13) + zeta(2*n, 10/13) - zeta(2*n, 11/13) + zeta(2*n, 12/13) ))*zeta(2*n)*sqrt(13)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according the Dirichlet character X13(12,.).
T(n, 6) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000411(n+1) /((2*n)!^2 * 24^(2*n - 1)) ).
T(n, 7) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064072(n+1) /((2*n)!^2 * 28^(2*n - 1)) ).
T(n, 11) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064075(n+1) /((2*n)!^2 * 40^(2*n - 1)) ).
T(n, k) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * d(A003658(k+2)/4, n+1) /((2*n)!^2 * 40^(2*n - 1)) ), for all k where A003658(k+2) is a multiple of four (The discriminant of the quadratic field is from 4*A230375). d() are the generalized tangent numbers.
T(0, k) = 1, because for a real quadratic number field the discriminant D is positive, hence the Kronecker symbol (D/-1) = 1. This means the associated Dirichlet L-function will be zero at s = 0 inside the expression zeta_r(s) = zeta(s)*L(s, x).

A370412 Square array T(n, k) = numerator( zeta_r(2*n) * sqrt(A003658(k + 2)) / Pi^(4*n) ), read by antidiagonals, where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).

Original entry on oeis.org

0, 2, 0, 4, 1, 0, 536, 11, 1, 0, 2888, 361, 23, 2, 0, 3302008, 24611, 1681, 116, 4, 0, 12724582576, 2873041, 257543, 267704, 328, 4, 0, 18194938976, 27233033477, 67637281, 3741352, 92656, 88, 1, 0, 875222833138832, 11779156811, 18752521534133, 1156377368, 479214352, 287536, 29, 2, 0
Offset: 0

Views

Author

Thomas Scheuerle, Feb 22 2024

Keywords

Examples

			The array begins:
          0,           0,              0,               0,                 0
          2,           1,              1,               2,                 4
          4,          11,             23,             116,               328
        536,         361,           1681,          267704,             92656
       2888,       24611,         257543,         3741352,         479214352
    3302008,     2873041,       67637281,      1156377368,       14816172016
12724582576, 27233033477, 18752521534133, 753075777246704, 16476431095568992
		

Crossrefs

Cf. A370411 (denominators).
Cf. A002432 (denominators zeta(2*n)/Pi^(2*n)).
Cf. A046988 (numerators zeta(2*n)/Pi^(2*n)).
Coefficients of Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • PARI
    \p 700
    row(n) = {v=[]; for(k=2, 50, if(isfundamental(k), v=concat(v, numerator(bestappr(sqrt(k)*lfun(x^2-(k%2)*x-floor(k/4), 2*n)/Pi^(4*n)))))); v}
    z(n,d) = if(n == 0, 0,(1/(-2*n))*bernfrac(2*n)*d^(2*n-1)*sum(k=1,d-1, kronecker(d, k)*subst(bernpol(2*n),x,k/d)*(1/(-2*n))))
    row(n) = {v=[]; for(k=2, 100, if(isfundamental(k), v=concat(v, numerator((2^(n*4)*n^2*z(n,k))/((2*n)!^2 * (k^(2*n-1))))))); v} \\ more accuracy here
    
  • Sage
    # Only suitable for small n and k
    def T(n, k):
        discs = [fundamental_discriminant(i) for i in range(1, 4*k+10)]
        D = sorted(list(set(discs)))[k+1]
        zetaK = QuadraticField(D).zeta_function(1000)
        val = (zetaK(2*n)*sqrt(D)/(pi^(4*n))).n(1000).nearby_rational(2^-900)
        return val.numerator() # Robin Visser, Mar 19 2024

Formula

T(n, k) = numerator( 2^(n*4) * n^2 * zeta_r(1 - 2*n) /((2*n)!^2 * A003658(k + 2)^(2*n - 1)) ), where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).
T(n, 0) = numerator((5^(-2*n)*(zeta(2*n, 1/5) - zeta(2*n, 2/5) - zeta(2*n, 3/5) + zeta(2*n, 4/5) ))*zeta(2*n)*sqrt(5)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according A080891.
T(n, 1) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000464(n+1) /((2*n)!^2 * 8^(2*n - 1)) ).
T(n, 2) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000191(n+1) /((2*n)!^2 * 12^(2*n - 1)) ).
T(n, 3) = numerator((13^(-2*n)*(zeta(2*n, 1/13) - zeta(2*n, 2/13) + zeta(2*n, 3/13) + zeta(2*n, 4/13) - zeta(2*n, 5/13) - zeta(2*n, 6/13) - zeta(2*n, 7/13) - zeta(2*n, 8/13) + zeta(2*n, 9/13) + zeta(2*n, 10/13) - zeta(2*n, 11/13) + zeta(2*n, 12/13) ))*zeta(2*n)*sqrt(13)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according the Dirichlet character X13(12,.).
T(n, 6) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000411(n+1) /((2*n)!^2 * 24^(2*n - 1)) ).
T(n, 7) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064072(n+1) /((2*n)!^2 * 28^(2*n - 1)) ).
T(n, 11) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064075(n+1) /((2*n)!^2 * 40^(2*n - 1)) ).
T(n, k) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * d(A003658(k+2)/4, n+1) /((2*n)!^2 * 40^(2*n - 1)) ), for all k where A003658(k+2) is a multiple of four (The discriminant of the quadratic field is from 4*A230375). d() are the generalized tangent numbers.
T(0, k) = 0, because for a real quadratic number field the discriminant D is positive, hence the Kronecker symbol (D/-1) = 1. This means the associated Dirichlet L-function will be zero at s = 0 inside the expression zeta_r(s) = zeta(s)*L(s, x).

A072901 Composite numbers n such that the discriminant of the quadratic field Q(sqrt(n)) equals 4n.

Original entry on oeis.org

6, 10, 14, 15, 22, 26, 30, 34, 35, 38, 39, 42, 46, 51, 55, 58, 62, 66, 70, 74, 78, 82, 86, 87, 91, 94, 95, 102, 106, 110, 111, 114, 115, 118, 119, 122, 123, 130, 134, 138, 142, 143, 146, 154, 155, 158, 159, 166, 170, 174, 178, 182, 183, 186, 187, 190, 194, 195
Offset: 1

Views

Author

Benoit Cloitre, Aug 10 2002

Keywords

Comments

Conjecture: All terms are squarefree. Example: 6=2*3; 15=3*5; 30=2*3*5; 154=2*7*11; 195=3*5*13. - Vincenzo Librandi, Aug 08 2010 and Michel Marcus, Nov 26 2013
If prime numbers were accepted, then sequence A230375 would have been obtained. - Michel Marcus, Nov 26 2013

Crossrefs

Cf. A037449.

Programs

  • PARI
    isok(n) = !isprime(n) && (quaddisc(n) == 4*n); \\ Michel Marcus, Nov 26 2013
Showing 1-8 of 8 results.