cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006643 Class number of quadratic field with discriminant -4n as n runs through A089269: squarefree numbers congruent to 1 or 2 mod 4.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 4, 4, 4, 2, 6, 6, 4, 4, 4, 2, 6, 8, 4, 4, 6, 4, 2, 6, 8, 8, 8, 8, 4, 4, 10, 8, 4, 4, 4, 10, 12, 4, 8, 4, 14, 4, 8, 6, 6, 12, 8, 8, 6, 10, 12, 4, 4, 14, 8, 8, 8, 4, 8, 16, 14, 8, 6, 8, 16, 8, 10, 12, 14, 12, 4, 8, 10, 12, 16, 12, 4, 4, 20, 10, 12, 6, 8, 20, 20, 8, 8, 6, 8, 10, 16
Offset: 1

Views

Author

Keywords

Comments

Equivalently, number of classes of primitive positive definite binary quadratic forms of discriminant -4n as n runs through A089269: squarefree numbers congruent to 1 or 2 mod 4.

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A subsequence of A000003.

Programs

  • PARI
    for (n=1,50, if(issquarefree(n) && (n%4 == 1 || n%4 == 2), print(n, " ", qfbclassno(-4*n)))) \\ N. J. A. Sloane, May 28 2014

Extensions

Extended and definition corrected by Max Alekseyev, Apr 16 2010

A003657 Discriminants of imaginary quadratic fields, negated.

Original entry on oeis.org

3, 4, 7, 8, 11, 15, 19, 20, 23, 24, 31, 35, 39, 40, 43, 47, 51, 52, 55, 56, 59, 67, 68, 71, 79, 83, 84, 87, 88, 91, 95, 103, 104, 107, 111, 115, 116, 119, 120, 123, 127, 131, 132, 136, 139, 143, 148, 151, 152, 155, 159, 163, 164, 167, 168, 179, 183, 184, 187, 191
Offset: 1

Views

Author

Keywords

Comments

Negative of fundamental discriminants D := b^2-4*a*c<0 of definite integer binary quadratic forms F=a*x^2+b*x*y+c*y^2. See Buell reference pp. 223-234. See 4*A089269 = A191483 for even a(n) and A039957 for odd a(n). - Wolfdieter Lang, Nov 07 2003
All prime numbers in the set of the absolute values of negative fundamental discriminants are Gaussian primes (A002145). - Paul Muljadi, Mar 29 2008
Complement: 1, 2, 5, 6, 9, 10, 12, 13, 14, 16, 17, 18, 21, 22, 25, 26, 27, 28, 29, 30, 32, 33, 34, 36, ..., . - Robert G. Wilson v, Jun 04 2011
The asymptotic density of this sequence is 3/Pi^2 (A104141). - Amiram Eldar, Feb 23 2021

References

  • Duncan A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989.
  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, p. 514.
  • Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002145, A003658, A039957 (odd terms), A191483 (even terms), A104141.

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *); -Select[-Range@ 194, FundamentalDiscriminantQ] (* Robert G. Wilson v, Jun 01 2011 *)
  • PARI
    ok(n)={isfundamental(-n)} \\ Andrew Howroyd, Jul 20 2018
    
  • PARI
    ok(n)={n<>1 && issquarefree(n/2^valuation(n,2)) && (n%4==3 || n%16==8 || n%16==4)} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..200) if is_fundamental_discriminant(-n)==1] # G. C. Greubel, Mar 01 2019

A039957 Squarefree numbers congruent to 3 mod 4.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 31, 35, 39, 43, 47, 51, 55, 59, 67, 71, 79, 83, 87, 91, 95, 103, 107, 111, 115, 119, 123, 127, 131, 139, 143, 151, 155, 159, 163, 167, 179, 183, 187, 191, 195, 199, 203, 211, 215, 219, 223, 227, 231, 235, 239, 247, 251, 255
Offset: 1

Views

Author

Keywords

Comments

Negatives of odd fundamental discriminants D := b^2-4*a*c<0 of definite integer binary quadratic forms F=a*x^2+b*x*y+c*y^2. See Buell reference pp. 224-230. See 4*A089269 = A191483 for the even case and A003657 for combined even and odd numbers. - Wolfdieter Lang, Nov 07 2003
The asymptotic density of this sequence is 2/Pi^2 = 0.202642... (A185197). - Amiram Eldar, Feb 10 2021

References

  • Richard A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.
  • Duncan A. Buell, Binary Quadratic Forms, Springer-Verlag, NY, 1989.

Crossrefs

Programs

  • Haskell
    a039957 n = a039957_list !! (n-1)
    a039957_list = filter ((== 3) . (`mod` 4)) a005117_list
    -- Reinhard Zumkeller, Aug 15 2011
    
  • Magma
    [4*n+3: n in [0..63] | IsSquarefree(4*n+3)];  // Bruno Berselli, Mar 04 2011
    
  • Mathematica
    fQ[n_] := SquareFreeQ[n] && Mod[n, 4] == 3; Select[ Range@ 258, fQ] (* Robert G. Wilson v, Mar 02 2011 *)
    Select[Range[3,300,4],SquareFreeQ] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    is(n)=n%4==3 && issquarefree(n) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Offset corrected

A191483 Even discriminants of imaginary quadratic fields, negated.

Original entry on oeis.org

4, 8, 20, 24, 40, 52, 56, 68, 84, 88, 104, 116, 120, 132, 136, 148, 152, 164, 168, 184, 212, 228, 232, 244, 248, 260, 264, 276, 280, 292, 296, 308, 312, 328, 340, 344, 356, 372, 376, 388, 404, 408, 420, 424, 436, 440, 452, 456, 472, 488, 516, 520, 532, 536, 548
Offset: 1

Views

Author

Robert G. Wilson v, Jun 04 2011

Keywords

Comments

Terms of A003657 that are not in A039957.
The asymptotic density of this sequence is 1/Pi^2 (A092742). - Amiram Eldar, Feb 23 2021

Crossrefs

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || ! Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *); -Select[-Range@550, FundamentalDiscriminantQ@# && EvenQ@# &]
    (* Second program: *)
    Select[Range[600], Mod[#, 4] == 0 && SquareFreeQ[#/4] && Mod[#, 16] != 12&] (* Jean-François Alcover, Jul 25 2019, after Andrew Howroyd *)
  • PARI
    ok(n)={isfundamental(-n) && n%2==0} \\ Andrew Howroyd, Jul 25 2018
    
  • PARI
    ok(n)={n%4==0 && issquarefree(n/4) && n%16<>12} \\ Andrew Howroyd, Jul 25 2018

Formula

Complement(A003657, A039957).
a(n) = 4*A089269(n). - Andrew Howroyd, Jul 25 2018
Showing 1-4 of 4 results.