A191484 Number of compositions of even natural numbers into 5 parts <= n.
1, 16, 122, 512, 1563, 3888, 8404, 16384, 29525, 50000, 80526, 124416, 185647, 268912, 379688, 524288, 709929, 944784, 1238050, 1600000, 2042051, 2576816, 3218172, 3981312, 4882813, 5940688
Offset: 0
Keywords
Examples
a(1)=16 as there are 16 compositions of even natural numbers into 5 parts <= 1: (0,0,0,0,0); (0,0,0,1,1), (0,0,1,0,1), (0,0,1,1,0), (0,1,1,0,0), (0,1,0,1,0), (0,1,0,0,1), (1,1,0,0,0), (1,0,1,0,0), (1,0,0,1,0), (1,0,0,0,1); (0,1,1,1,1), (1,0,1,1,1), (1,1,0,1,1), (1,1,1,0,1), (1,1,1,1,0).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Adi Dani, Restricted compositions of natural numbers
- Index entries for linear recurrences with constant coefficients, signature (5,-9,5,5,-9,5,-1).
Crossrefs
Programs
-
Magma
[((n + 1)^5 + (1 + (-1)^n)/2 )/2: n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
-
Mathematica
Table[1/2*((n + 1)^5 + (1 + (-1)^n)*1/2), {n, 0, 25}] LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,16,122,512,1563,3888,8404},50] (* Harvey P. Dale, Nov 09 2011 *)
Formula
a(n) = ((n + 1)^5 + (1 + (-1)^n)/2 )/2.
a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7).
G.f.: (16*x^4 + 41*x^3 + 51*x^2 + 11*x + 1)/((1-x)^6*(1+x)).
Comments