cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191527 Number of turns in all left factors of Dyck paths of length n.

Original entry on oeis.org

0, 0, 1, 3, 9, 20, 50, 105, 245, 504, 1134, 2310, 5082, 10296, 22308, 45045, 96525, 194480, 413270, 831402, 1755182, 3527160, 7407036, 14872858, 31097794, 62403600, 130007500, 260757900, 541574100, 1085822640, 2249204040, 4508102925, 9316746045
Offset: 0

Views

Author

Emeric Deutsch, Jun 06 2011

Keywords

Examples

			a(4)=9 because in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU we have a total of 3+2+1+2+1+0=9 turns (here U=(1,1) and D=(1,-1)).
		

Crossrefs

Cf. A088855.

Programs

  • Maple
    g := 2*z^2*(1-4*z^2-4*z^3)/((1-2*z)*((1+z)*(1-4*z^2)*(1-2*z)+(1-z-4*z^2)*sqrt(1-4*z^2))): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
    a := proc (n) options operator, arrow: sum(k*binomial(floor((1/2)*n-1/2), floor((1/2)*k))*binomial(ceil((1/2)*n-1/2), ceil((1/2)*k)), k = 0 .. n) end proc: seq(a(n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[2*x^2*(1-4*x^2-4*x^3)/((1-2*x)*((1+x)*(1-4*x^2)*(1-2*x)+(1-x-4*x^2)*Sqrt[1-4*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(2*x^2*(1-4*x^2-4*x^3)/((1-2*x)*((1+x)*(1-4*x^2)*(1-2*x)+(1-x-4*x^2)*sqrt(1-4*x^2))))) \\ G. C. Greubel, May 27 2017

Formula

a(n) = Sum_{k=0..n} k*binomial(floor((n-1)/2), floor(k/2))*binomial(ceiling((n-1)/2), ceiling(k/2)).
G.f.: g(z)=2*z^2*(1-4*z^2-4*z^3)/((1-2*z)*((1+z)*(1-4*z^2)*(1-2*z)+(1-z-4*z^2)*sqrt(1-4*z^2))).
a(n) ~ 2^(n-1/2)*sqrt(n)/sqrt(Pi). - Vaclav Kotesovec, Mar 21 2014
D-finite with recurrence (n+1)*a(n) + (-n-1)*a(n-1) + 2*(-4*n+5)*a(n-2) + 4*(n+1)*a(n-3) + 16*(n-3)*a(n-4) = 0. - R. J. Mathar, Jun 06 2014