A191527 Number of turns in all left factors of Dyck paths of length n.
0, 0, 1, 3, 9, 20, 50, 105, 245, 504, 1134, 2310, 5082, 10296, 22308, 45045, 96525, 194480, 413270, 831402, 1755182, 3527160, 7407036, 14872858, 31097794, 62403600, 130007500, 260757900, 541574100, 1085822640, 2249204040, 4508102925, 9316746045
Offset: 0
Keywords
Examples
a(4)=9 because in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU we have a total of 3+2+1+2+1+0=9 turns (here U=(1,1) and D=(1,-1)).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A088855.
Programs
-
Maple
g := 2*z^2*(1-4*z^2-4*z^3)/((1-2*z)*((1+z)*(1-4*z^2)*(1-2*z)+(1-z-4*z^2)*sqrt(1-4*z^2))): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32); a := proc (n) options operator, arrow: sum(k*binomial(floor((1/2)*n-1/2), floor((1/2)*k))*binomial(ceil((1/2)*n-1/2), ceil((1/2)*k)), k = 0 .. n) end proc: seq(a(n), n = 0 .. 32);
-
Mathematica
CoefficientList[Series[2*x^2*(1-4*x^2-4*x^3)/((1-2*x)*((1+x)*(1-4*x^2)*(1-2*x)+(1-x-4*x^2)*Sqrt[1-4*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
-
PARI
x='x+O('x^50); concat([0,0], Vec(2*x^2*(1-4*x^2-4*x^3)/((1-2*x)*((1+x)*(1-4*x^2)*(1-2*x)+(1-x-4*x^2)*sqrt(1-4*x^2))))) \\ G. C. Greubel, May 27 2017
Formula
a(n) = Sum_{k=0..n} k*binomial(floor((n-1)/2), floor(k/2))*binomial(ceiling((n-1)/2), ceiling(k/2)).
G.f.: g(z)=2*z^2*(1-4*z^2-4*z^3)/((1-2*z)*((1+z)*(1-4*z^2)*(1-2*z)+(1-z-4*z^2)*sqrt(1-4*z^2))).
a(n) ~ 2^(n-1/2)*sqrt(n)/sqrt(Pi). - Vaclav Kotesovec, Mar 21 2014
D-finite with recurrence (n+1)*a(n) + (-n-1)*a(n-1) + 2*(-4*n+5)*a(n-2) + 4*(n+1)*a(n-3) + 16*(n-3)*a(n-4) = 0. - R. J. Mathar, Jun 06 2014