cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191585 Central coefficients of the Riordan matrix (1/(1-3*x^2),x/(1-x)) (A191582).

Original entry on oeis.org

1, 1, 6, 19, 74, 276, 1056, 4047, 15606, 60382, 234356, 911802, 3554864, 13883650, 54304788, 212687199, 833958918, 3273341382, 12859792932, 50562992490, 198954466524, 783371113152, 3086377703184, 12166795814166, 47987669811276, 189361785529476
Offset: 0

Views

Author

Emanuele Munarini, Jun 07 2011

Keywords

Crossrefs

Cf. A191582.

Programs

  • Mathematica
    Table[Sum[Binomial[2n-2i-1,n-2i]3^i,{i,0,n/2}],{n,0,25}]
    CoefficientList[Series[(2-11x+12x^2+(2-9x)Sqrt[1-4x])/(2(1-4x)(2- 6x-9x^2)),{x,0,30}],x] (* Harvey P. Dale, Jun 10 2011 *)
  • Maxima
    makelist(sum(binomial(2*n-2*i-1,n-2*i)*3^i,i,0,n/2),n,0,25);

Formula

a(n) = T(2*n,n), where T(n,k) = A...(n,k).
a(n) = sum(binomial(2*n-2*i-1,n-2*i)*3^i,i=0..n/2).
G.f.: (2-11*x+12*x^2+(2-9*x)*sqrt(1-4*x))/(2*(1-4*x)*(2-6*x-9*x^2)).
Conjecture: 2*n*(n+3)*a(n) +2*(-7*n^2-19*n+24)*a(n-1) +3*(5*n^2+11*n-48)*a(n-2) +18*(n+4)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jun 14 2016
Conjecture: +4*n*a(n) +2*(-23*n+22)*a(n-1) +156*(n-2)*a(n-2) +9*(-7*n+38)*a(n-3) +162*(-2*n+5)*a(n-4)=0. - R. J. Mathar, Jun 14 2016