A191593 Number of partitions of 12*n into parts < 5.
1, 34, 169, 478, 1033, 1906, 3169, 4894, 7153, 10018, 13561, 17854, 22969, 28978, 35953, 43966, 53089, 63394, 74953, 87838, 102121, 117874, 135169, 154078, 174673, 197026, 221209, 247294, 275353, 305458, 337681
Offset: 0
Examples
a(1)=34 all partitions of 1*12=12 into parts < 5 are: [1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,3], [1,1,1,1,1,1,1,1,2,2], [1,1,1,1,1,1,1,1,4], [1,1,1,1,1,1,1,2,3], [1,1,1,1,1,1,2,2,2], [1,1,1,1,1,1,2,4], [1,1,1,1,1,1,3,3], [1,1,1,1,1,2,2,3], [1,1,1,1,2,2,2,2], [1,1,1,1,1,3,4], [1,1,1,1,2,2,4], [1,1,1,1,2,3,3], [1,1,1,2,2,2,3], [1,1,2,2,2,2,2], [1,1,1,1,4,4], [1,1,1,2,3,4], [1,1,1,3,3,3], [1,1,2,2,2,4], [1,1,2,2,3,3], [1,2,2,2,2,3], [2,2,2,2,2,2], [1,1,2,4,4], [1,1,3,3,4], [1,2,2,3,4], [1,2,3,3,3], [2,2,2,2,4], [2,2,2,3,3], [1,3,4,4], [2,2,4,4], [2,3,3,4], [3,3,3,3], [4,4,4].
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[12*n^3+15*n^2+6*n+1: n in [0..30]]; // Vincenzo Librandi, Jun 16 2011
-
Mathematica
Table[12n^3 + 15n^2 + 6n + 1, {n, 0, 30}]
Formula
a(n) = 12*n^3 + 15*n^2 + 6*n + 1.
From R. J. Mathar, Jun 08 2011: (Start)
G.f.: (1 + 30*x + 39*x^2 + 2*x^3) / (x-1)^4. (End)
Comments