cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191593 Number of partitions of 12*n into parts < 5.

Original entry on oeis.org

1, 34, 169, 478, 1033, 1906, 3169, 4894, 7153, 10018, 13561, 17854, 22969, 28978, 35953, 43966, 53089, 63394, 74953, 87838, 102121, 117874, 135169, 154078, 174673, 197026, 221209, 247294, 275353, 305458, 337681
Offset: 0

Views

Author

Adi Dani, Jun 07 2011

Keywords

Comments

Number of ways of placing of 12*n indistinguishable objects into indistinguishable boxes with condition that in each box can be at most 4 objects.

Examples

			a(1)=34 all partitions of 1*12=12 into parts < 5 are:
[1,1,1,1,1,1,1,1,1,1,1,1],
[1,1,1,1,1,1,1,1,1,1,2],
[1,1,1,1,1,1,1,1,1,3],
[1,1,1,1,1,1,1,1,2,2],
[1,1,1,1,1,1,1,1,4],
[1,1,1,1,1,1,1,2,3],
[1,1,1,1,1,1,2,2,2],
[1,1,1,1,1,1,2,4],
[1,1,1,1,1,1,3,3],
[1,1,1,1,1,2,2,3],
[1,1,1,1,2,2,2,2],
[1,1,1,1,1,3,4],
[1,1,1,1,2,2,4],
[1,1,1,1,2,3,3],
[1,1,1,2,2,2,3],
[1,1,2,2,2,2,2],
[1,1,1,1,4,4],
[1,1,1,2,3,4],
[1,1,1,3,3,3],
[1,1,2,2,2,4],
[1,1,2,2,3,3],
[1,2,2,2,2,3],
[2,2,2,2,2,2],
[1,1,2,4,4],
[1,1,3,3,4],
[1,2,2,3,4],
[1,2,3,3,3],
[2,2,2,2,4],
[2,2,2,3,3],
[1,3,4,4],
[2,2,4,4],
[2,3,3,4],
[3,3,3,3],
[4,4,4].
		

Programs

  • Magma
    [12*n^3+15*n^2+6*n+1: n in [0..30]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    Table[12n^3 + 15n^2 + 6n + 1, {n, 0, 30}]

Formula

a(n) = 12*n^3 + 15*n^2 + 6*n + 1.
From R. J. Mathar, Jun 08 2011: (Start)
a(n) = A001400(12n) = A014126(6n).
G.f.: (1 + 30*x + 39*x^2 + 2*x^3) / (x-1)^4. (End)