A191609 Primes modulo which the multiplicative orders of 2 and 3 are equal.
5, 19, 23, 29, 47, 53, 71, 97, 101, 139, 149, 163, 167, 173, 191, 197, 211, 239, 263, 269, 293, 311, 317, 359, 379, 383, 389, 409, 431, 461, 479, 499, 503, 509, 557, 599, 643, 647, 653, 677, 701, 719, 743, 773, 797, 821, 839, 859, 863, 887, 907, 941, 983
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(p -> isprime(p) and numtheory:-order(2,p) = numtheory:-order(3,p), [seq(i,i=5..10000,2)]); # Robert Israel, Jan 24 2024
-
Mathematica
okQ[p_] := MultiplicativeOrder[2, p] == MultiplicativeOrder[3, p]; Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
-
PARI
forprime(p=5,10^3, if( znorder(Mod(2,p))==znorder(Mod(3,p)), print1(p,", ");) )